skip to main content


Title: Lianas decelerate tropical forest thinning during succession
Abstract

The well‐established pattern of forest thinning during succession predicts an increase in mean tree biomass with decreasing tree density. The forest thinning pattern is commonly assumed to be driven solely by tree‐tree competition. The presence of non‐tree competitors could alter thinning trajectories, thus altering the rate of forest succession and carbon uptake. We used a large‐scale liana removal experiment over 7 years in a 60‐ to 70‐year‐old Panamanian forest to test the hypothesis that lianas reduce the rate of forest thinning during succession. We found that lianas slowed forest thinning by reducing tree growth, not by altering tree recruitment or mortality. Without lianas, trees grew and presumably competed more, ultimately reducing tree density while increasing mean tree biomass. Our findings challenge the assumption that forest thinning is driven solely by tree‐tree interactions; instead, they demonstrate that competition from other growth forms, such as lianas, slow forest thinning and ultimately delay forest succession.

 
more » « less
Award ID(s):
2001799
NSF-PAR ID:
10444946
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
25
Issue:
6
ISSN:
1461-023X
Format(s):
Medium: X Size: p. 1432-1441
Size(s):
["p. 1432-1441"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lianas are prevalent in Neotropical forests, where liana‐tree competition can be intense, resulting in reduced tree growth and survival. The ability of lianas to grow relative to trees during the dry season suggests that liana‐tree competition is also strongest in the dry season. If correct, the predicted intensification of the drying trend over large areas of the tropics in the future may therefore intensify liana‐tree competition resulting in a reduced carbon sink function of tropical forests. However, no study has established whether the liana effect on tree carbon accumulation is indeed stronger in the dry than in the wet season.

    Using 6 years of data from a large‐scale liana removal experiment in Panama, we provide the first experimental test of whether liana effects on tree carbon accumulation differ between seasons. We monitored tree and liana diameter increments at the beginning of the dry and wet season each year to assess seasonal differences in forest‐level carbon accumulation between removal and control plots.

    We found that median liana carbon accumulation was consistently higher in the dry (0.52 Mg C ha−1year−1) than the wet season (0.36 Mg C ha−1year−1) and significantly so in three of the years. Lianas reduced forest‐level median tree carbon accumulation more severely in the wet (1.45 Mg C ha−1year−1) than the dry (1.05 Mg C ha−1year−1) season in all years. However, the relative effect of lianas was similar between the seasons, with lianas reducing forest‐level tree carbon accumulation by 46.9% in the dry and 48.5% in the wet season.

    Synthesis.Our results provide the first experimental demonstration that lianas do not have a stronger competitive effect on tree carbon accumulation during the dry season. Instead, lianas compete significantly with trees during both seasons, indicating a large negative effect of lianas on forest‐level tree biomass increment regardless of seasonal water stress. Longer dry seasons are unlikely to impact liana‐tree competition directly; however, the greater liana biomass increment during dry seasons may lead to further proliferation of liana biomass in tropical forests, with consequences for their ability to store and sequester carbon.

     
    more » « less
  2. Abstract

    Early successional tropical forests could mitigate climate change via rapid accumulation of atmospheric carbon. However, liana (woody vine) abundance and biomass has been increasing in many tropical forests over the past decades, which may slow the speed at which secondary forests accumulate biomass. Lianas decrease biomass accumulation in tropical forests, and may have a particularly strong effect on young forests by stalling tree growth. As forests mature, trees may outgrow or shed lianas, thus escaping some of the negative effects of lianas. Alternatively, lianas may have the strongest effect in older successional forests if the effect of lianas is commensurate with their density, which increases dramatically in the first decades of forest succession. We tested these two hypotheses using a landscape liana‐removal experiment in 30 forest stands that ranged from 10 to 35 yr old in Central Panama. We measured tree growth and biomass accumulation in the stands every year from 2014 to 2017. We found that the effect of liana removal on large trees (≥20‐cm diameter) decreased with forest age, supporting the hypothesis that lianas have the strongest negative effects on trees, and thus biomass uptake and carbon storage, in very young successional forests. Large trees accumulated more biomass in the absence of lianas in younger forests than in older forests (compared to controls) even after accounting for the effect of canopy completeness and crown illumination, implying that the detrimental effects of lianas go well beyond resource availability and crown health. There was no significant effect of lianas on small trees (1–20‐cm diameter), likely because lianas seek light and thus do not deploy their leaves on small trees that are trapped in the forest understory. Our results show that high liana density early in forest succession reduces forest biomass accumulation by negatively impacting large trees, thus decreasing the capacity of young secondary forests to mitigate climate change. Although the negative effects of lianas on forest biomass diminish as forests age, they do not disappear, and thus lianas are an important component of tropical forest carbon budgets throughout succession.

     
    more » « less
  3. Abstract

    Growing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing the recovery of forests following disturbance. A recent theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present the first global assessment of liana–tree relative performance in response to forest disturbance and climate drivers. Using an unprecedented dataset, we analysed 651 vegetation samples representing 26,538 lianas and 82,802 trees from 556 unique locations worldwide, derived from 83 publications. Results show that lianas perform better relative to trees (increasing liana‐to‐tree ratio) when forests are disturbed, under warmer temperatures and lower precipitation and towards the tropical lowlands. We also found that lianas can be a critical factor hindering forest recovery in disturbed forests experiencing liana‐favourable climates, as chronosequence data show that high competitive success of lianas over trees can persist for decades following disturbances, especially when the annual mean temperature exceeds 27.8°C, precipitation is less than 1614 mm and climatic water deficit is more than 829 mm. These findings reveal that degraded tropical forests with environmental conditions favouring lianas are disproportionately more vulnerable to liana dominance and thus can potentially stall succession, with important implications for the global carbon sink, and hence should be the highest priority to consider for restoration management.

     
    more » « less
  4. Abstract

    Despite their low contribution to forest carbon stocks, lianas (woody vines) play an important role in the carbon dynamics of tropical forests. As structural parasites, they hinder tree survival, growth and fecundity; hence, they negatively impact net ecosystem productivity and long‐term carbon sequestration.

    Competition (for water and light) drives various forest processes and depends on the local abundance of resources over time. However, evaluating the relative role of resource availability on the interactions between lianas and trees from empirical observations is particularly challenging. Previous approaches have used labour‐intensive and ecosystem‐scale manipulation experiments, which are infeasible in most situations.

    We propose to circumvent this challenge by evaluating the uncertainty of water and light capture processes of a process‐based vegetation model (ED2) including the liana growth form. We further developed the liana plant functional type in ED2 to mechanistically simulate water uptake and transport from roots to leaves, and start the model from prescribed initial conditions. We then used the PEcAn bioinformatics platform to constrain liana parameters and run uncertainty analyses.

    Baseline runs successfully reproduced ecosystem gas exchange fluxes (gross primary productivity and latent heat) and forest structural features (leaf area index, aboveground biomass) in two sites (Barro Colorado Island, Panama and Paracou, French Guiana) characterized by different rainfall regimes and levels of liana abundance.

    Model uncertainty analyses revealed that water limitation was the factor driving the competition between trees and lianas at the drier site (BCI), and during the relatively short dry season of the wetter site (Paracou). In young patches, light competition dominated in Paracou but alternated with water competition between the wet and the dry season on BCI according to the model simulations.

    The modelling workflow also identified key liana traits (photosynthetic quantum efficiency, stomatal regulation parameters, allometric relationships) and processes (water use, respiration, climbing) driving the model uncertainty. They should be considered as priorities for future data acquisition and model development to improve predictions of the carbon dynamics of liana‐infested forests.

    Synthesis. Competition for water plays a larger role in the interaction between lianas and trees than previously hypothesized, as demonstrated by simulations from a process‐based vegetation model.

     
    more » « less
  5. Abstract

    Western US forests represent a carbon sink that contributes to meeting regional and global greenhouse gas targets. Forest thinning is being implemented as a strategy for reducing forest vulnerability to disturbance, including mortality from fire, insects, and drought, as well as protecting human communities. However, the terrestrial carbon balance impacts of thinning remain uncertain across regions, spatiotemporal scales, and treatment types. Continuous and in situ long‐term measurements of partial harvest impacts to stand‐scale carbon and water cycle dynamics are nonetheless rare. Here, we examine post‐thinning carbon and water flux impacts in a young ponderosa pine forest in Northern Idaho. We examine in situ stock and flux impacts during the 3 years after treatment as well as simulate the forest sector carbon balance through 2050, including on and off‐site net emissions. During the observation period, increases in tree‐scale net primary production (NPP) and water use persistence through summer drought did not overcome the impacts of density reduction, leading to 45% annual reductions of NPP. Growth duration remained constrained by summer drought in control and thinned stands. Ecosystem model and life cycle assessment estimates demonstrated a net forest sector carbon deficit relative to control stands of 27.0 Mg C ha−1in 2050 due to emissions from dead biomass pools despite increases to net ecosystem production. Our results demonstrate dynamics resulting in carbon losses from forest thinning, providing a baseline with which to inform landscape‐scale modeling and assess tradeoffs between harvest losses and potential gains from management practices.

     
    more » « less