skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: BioMolViz: A Community to Improve Biomolecular Visual Literacy
Biochemistry relies heavily on the use of images and diagrams to make the abstract tangible. Yet, as biochemistry instructors, how do we know whether our students see the same things we instructors see? BioMolViz (biomolviz.org) is a community of practice dedicated to the instruction and assessment of biomolecular visual literacy. To this end, BioMolViz created the Biomolecular Visualization Framework, an assessment tool that identifies more than 200 learning objectives clustered under twelve overarching themes, such as StructureFunction and Alternate Renderings. The team is currently assembling a searchable repository to host assessment instruments for each of these learning objectives. To aid in its construction, BioMolViz is recruiting participants to help write, revise, and pilot these instruments in the classroom. Here, we introduce the Framework, share various BioMolViz projects, and invite likeminded individuals to work with us to build students’ biomolecular visual literacy.  more » « less
Award ID(s):
1920270
PAR ID:
10343736
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
FEBS-IUBMB-PABMB 2022 Congress (Lisbon, Portugal)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Visual literacy is recognized as a threshold concept in biochemistry and molecular biology. However, a consensus on the optimal methods for teaching and evaluating remains elusive. For a decade, BioMolViz has strived to enhance biomolecular visualization assessment. Through workshops and online working groups, we guide instructors on how to probe biomolecular visual literacy using accessible images and questions, which are ultimately shared broadly through our online repository (the BioMolViz Library). Here, we present the final step of our assessment validation process which occurred during the 2022-2023 academic year. We engaged life science students from seven U.S.-based institutions in a pilot field test. Students responded to the multiple choice, multiple select and free response items, rated them on their perceived difficulty, and provided optional open-ended feedback. As we examined the data, we became curious about whether instructors viewed the difficulty level of the items similarly to students. We followed up with an instructor survey where respondents rated and commented on the difficulty of 14 assessment items that were administered to students in the pilot field test. Subsequently, we conducted a mixed methods study to analyze our quantitative and qualitative data. Our analysis revealed a statistically significant disparity between instructors' and students' perceptions of assessment difficulty. Notably, regression models suggest that students' performance predicts their perceived difficulty, with high-performing students finding the assessment generally easier than their lower-performing peers. This points to the crucial role of performance in shaping students' perceptions, while also indicating that instructors, on the whole, tended to view the assessment as less challenging than students. To gain deeper insights into these findings, we performed thematic coding of both student and instructor responses. Our analysis unveiled three pivotal themes in visual literacy assessment: (a) expectations about images guide student performance, (b) disparities exist in visual literacy problem solving, and (c) content knowledge can be both a help and hindrance in visualization. Importantly, these results have changed the way members of our team now approach teaching and evaluating biomolecular visualization skills in our own classrooms. We will share our revised approaches alongside results from our study and provide practical recommendations to aid educators in effectively teaching and evaluating visual literacy in their classrooms. This material is supported by the National Science Foundation (NSF) under grants RCN-UBE #1920270 and NSF-IUSE #1712268 
    more » « less
  2. Abstract While molecular visualization has been recognized as a threshold concept in biology education, the explicit assessment of students' visual literacy skills is rare. To facilitate the evaluation of this fundamental ability, a series of NSF‐IUSE‐sponsored workshops brought together a community of faculty engaged in creating instruments to assess students' biomolecular visualization skills. These efforts expanded our earlier work in which we created a rubric describing overarching themes, learning goals, and learning objectives that address student progress toward biomolecular visual literacy. Here, the BioMolViz Steering Committee (BioMolViz.org) documents the results of those workshops and uses social network analysis to examine the growth of a community of practice. We also share many of the lessons we learned as our workshops evolved, as they may be instructive to other members of the scientific community as they organize workshops of their own. 
    more » « less
  3. A brief glance through molecular biology and biochemistry textbooks underscores the importance of interpreting visual images in the molecular life sciences. In fact, biomolecular visual literacy has been deemed a threshold concept, essential for student success in the field. As one example, grasping the information displayed in visual representations is a gateway to a deep understanding of structure-function relationships, a core concept in biology education. Despite much interest, few studies have examined the assessment of visual literacy skills in the area of biomolecules. Ten years ago, BioMolViz began an initiative to improve biomolecular visualization instruction and assessment, which focused on developing validated assessments to probe students' visual literacy skills. In 2023, we introduced the BioMolViz Library, a repository where instructors can access the instruments built by our community. A subset of these assessments were administered in classrooms in a pilot field test during the 2022–2023 academic year. We gained invaluable information from both quantitative and qualitative data collected. Lessons learned from this first classroom test guided the design of the 2023–2024 large-scale field testing we describe here with over ten partner institutions, high enrollment classes, and an increased number of items per survey. We present the results of our analysis of item difficulty, discrimination, and distractor analysis, alongside a robust analysis of the influence of gender and race/ethnicity on student performance. To improve the statistical power of the study, we exchanged open-ended written feedback for an increased number of assessment items administered on each survey. However, recognizing the value of student feedback obtained through a mixed methods analysis from our 2022–2023 study, we followed up with focus groups to explore the perceptions and problem solving process of both low- and high-performing students. We present the results of our assessment validation, including an analysis of the influence of learner level, gender identity, and race/ethnicity on performance. We include suggestions for equitable and inclusive assessment methods as we continue to strive to improve visual literacy instruction. This material is supported by the National Science Foundation (NSF) under grants RCN-UBE #1920270 and NSF-IUSE #1712268. 
    more » « less
  4. BioMolViz is a community of practice dedicated to improving biomolecular visualization instruction. Guided by a framework of learning objectives for biomolecular visualization skills, our initial project goal was to create a repository of validated assessments to evaluate students’ visual literacy. In 2018, the team was awarded one year of seed funding, which led to a four-year National Science Foundation (NSF) grant. This support allowed BioMolViz to flourish into a community of educators in professional development workshops and working groups, where teams of participants aimed to design effective and accessible assessments to evaluate students’ biomolecular visual literacy. As the project advanced, we piloted these items in classrooms across the United States. Through a small-scale classroom testing study, we compared student and instructor perceptions of assessment difficulty, while large-scale testing revealed performance patterns that reinforced the need to understand distinct student perspectives. This led us to evaluate students’ problem-solving strategies through surveys and semi-structured interviews. Based on this work, we argue that a reimagining of the curriculum can begin with faculty, but must include productive student partnerships to enact effective change. We offer our repository of visual literacy assessments, the BioMolViz Library, as an instructor resource shaped by the student perspective, and present a new instructor training resource recently produced by our working group. As we approach the close of our funding cycle, we offer our ideas and invite conversations on fostering long-term sustainability for our robust community of practice, under all future resource models. 
    more » « less
  5. For a decade, BioMolViz has been developing tools to improve visual literacy instruction. In collaboration with the biochemistry and molecular biology (BMB) education community, our group authored a Biomolecular Visualization Framework to assess visual literacy skills and used the framework’s learning objectives in the backward design of assessments. Our validation process, which includes iterative revision by our working group of faculty, expert panel review, and large-scale classroom testing, has produced a subset of validated assessments which are available in our online repository, the BioMolViz Library. Nearly 200 assessments are now moving through the earlier phases of our validation process. With an eye always on inclusivity, we used our large-scale field testing data to examine performance trends. Upon observing some differences in performance that correlated with gender and race, we organized semi-structured interviews with small groups of undergraduate students to further evaluate our assessments. Disaggregating students into groups by gender, we asked students to share initial impressions and engage in collaborative reflection on their problem solving strategies. As we thematically code our interview transcripts, which include male and female groups from three U.S.-based institutions, we seek to further improve the clarity of our assessments, while exploring approaches to problem solving that may uncover demographic-related differences and make visual literacy more inclusive for all learners. 
    more » « less