skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scalable and Selective β‐Hydroxy‐α‐Amino Acid Synthesis Catalyzed by Promiscuous l ‐Threonine Transaldolase ObiH
Award ID(s):
1919350
PAR ID:
10343900
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ChemBioChem
Volume:
23
Issue:
2
ISSN:
1439-4227
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Abstract Groundwater/surface‐water (GW/SW) exchange and hyporheic processes are topics receiving increasing attention from the hydrologic community. Hydraulic, chemical, temperature, geophysical, and remote sensing methods are used to achieve various goals (e.g., inference of GW/SW exchange, mapping of bed materials, etc.), but the application of these methods is constrained by site conditions such as water depth, specific conductance, bed material, and other factors. Researchers and environmental professionals working on GW/SW problems come from diverse fields and rarely have expertise in all available field methods; hence there is a need for guidance to design field campaigns and select methods that both contribute to study goals and are likely to work under site‐specific conditions. Here, we present the spreadsheet‐based GW/SW‐Method Selection Tool (GW/SW‐MST) to help practitioners identify methods for use in GW/SW and hyporheic studies. The GW/SW‐MST is a Microsoft Excel‐based decision support tool in which the user selects answers to questions about GW/SW‐related study goals and site parameters and characteristics. Based on user input, the tool indicates which methods from a toolbox of 32 methods could potentially contribute to achieving the specified goals at the site described. 
    more » « less
  3. Cortajarena, Aitziber L (Ed.)
    Abstract Palladin is an actin‐binding protein that accelerates actin polymerization and is linked to the metastasis of several types of cancer. Previously, three lysine residues in an immunoglobulin‐like domain of palladin have been identified as essential for actin binding. However, it is still unknown where palladin binds to F‐actin. Evidence that palladin binds to the sides of actin filaments to facilitate branching is supported by our previous study showing that palladin was able to compensate for Arp2/3 in the formation ofListeriaactin comet tails. Here, we used chemical crosslinking to covalently link palladin and F‐actin residues based on spatial proximity. Samples were then enzymatically digested, separated by liquid chromatography, and analyzed by tandem mass spectrometry. Peptides containing the crosslinks and specific residues involved were then identified for input to the HADDOCK docking server to model the most likely binding conformation. Small‐angle x‐ray scattering was used to provide further insight into palladin flexibility and the binding interface, and NMR spectra identified potential interactions between palladin's Ig domains. Our final structural model of the F‐actin:palladin complex revealed how palladin interacts with and stabilizes F‐actin at the interface between two actin monomers. Three actin residues that were identified in this study also appear commonly in the actin‐binding interface with other proteins such as myotilin, myosin, and tropomodulin. An accurate structural representation of the complex between palladin and actin extends our understanding of palladin's role in promoting cancer metastasis through the regulation of actin dynamics. 
    more » « less