skip to main content


Title: Multi-Hazard Housing Safety Perceptions of Those Involved with Housing Construction in Puerto Rico
Globally, hazards are increasingly threatening housing each year, and housing constructed outside the formal sector may be particularly vulnerable. Yet, limited studies have investigated the perceptions of those responsible for designing and building this housing. These safety perceptions motivate the informal housing construction practices that ultimately determine housing safety. Thus, this study investigates the multi-hazard housing safety perceptions of individuals involved with housing construction in Puerto Rico. We surveyed 345 builders and hardware store employees across Puerto Rico to understand their perceptions of expected housing damage in hurricanes and earthquakes, important mitigation measures, and barriers to safer housing construction. Our results reveal that prior hazard experience did not influence perceptions of expected housing damage, but previous housing construction experience did. Respondents viewed wood and concrete housing as less safe in hurricanes and earthquakes, respectively. Yet, respondents appeared uncertain about the importance of mitigation measures for concrete houses in earthquakes, likely due to a combination of limited earthquake experience and “hidden” reinforcement detailing in a reinforced concrete house. Interestingly, our results also show that respondents perceive technical construction capacity as a major barrier to safer informal housing construction rather than resource constraints alone. These findings suggest areas for technical construction capacity development for Puerto Rico’s informal construction sector.  more » « less
Award ID(s):
1901808
NSF-PAR ID:
10343934
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Sustainability
Volume:
14
Issue:
7
ISSN:
2071-1050
Page Range / eLocation ID:
3802
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. More than 1.6 billion people worldwide live in informally constructed houses, many of which are reinforced with concrete. Patterns of past earthquake damage suggest that these homes have significant seismic vulnerabilities, endangering their occupants. The characteristics of these houses vary widely with local building practices. In addition, these vulnerabilities are potentially exacerbated by incremental construction practices and building practices that address wind/flood risk in multi-hazard environments. Yet, despite the ubiquity of this type of construction, there have not been efforts to systematically assess the seismic risks to support risk-reducing design and construction strategies. In this study, we developed a method to assess the seismic collapse capacity of informally constructed housing that accounts for local building practices and materials, quantifying the effect of building characteristics on collapse risk. We exercise the method to assess seismic performance of housing in the US. Caribbean Island of Puerto Rico, which has high seismic hazard and experiences frequent hurricanes. This analysis showed that heavy construction, often due to the addition of a second story, and the presence of an open ground story leads to a high collapse risk. Severely corroded steel bars could also worsen performance. Although houses with infill performed better than those with an open ground story, confined masonry construction techniques produced a major reduction in collapse risk when compared to infilled or open-frame construction. Infill construction with partial height walls performed very poorly. Well-built reinforced concrete column jackets and the addition of infill in open first-story bays can reduce the greater risks of openground- story houses. These findings, which are quantified in the results portion of this article, are intended to support the development of design and construction recommendations for safer housing.There is an urgent need to improve community capacity to recover more effectively after disasters through safer design and construction practices. To do this, training programs need to foster an improved understanding of shelter design and construction to withstand future wind and earthquake events. This project analyzed informal builders’ perceptions of housing safety in Puerto Rico (responding to 2017's Hurricane Maria and the 2019-2020 earthquake swarm) and homeowner’s perceptions of housing safety in Philippines (responding to 2013's Typhoon Haiyan and 2017's Ormoc earthquake) to: (1) assess local understanding of shelter safety in multiple hazards, including causal factors influencing this understanding, through a household survey in the Philippines and a survey to informal contractors in Puerto Rico; (2) assess the expected performance of various post-disaster shelter typologies to quantify safety during future earthquake and wind events using performance-based engineering methods, developing a rapid screening tool that can be used in design or evaluation; (3) identify conflicts between perceived and assessed safety of shelter, and why these conflicts exist, by comparing engineering assessments with local perceptions; and (4) create a communication design for organizations assisting with training for safer housing construction. 
    more » « less
  2. This study assesses the wind performance of various housing typologies representing informal construction practices in Puerto Rico to suggest modifications to enhance housing resilience in hurricanes. Based on fieldwork and interviews, the study defined four base housing typologies and possible variations in design and construction details. Each house was assessed using performance-based static wind analysis of potentially critical components. The results show that the initial governing failure mode in all base house typologies considered is roof panel loss due to tear-through at the fasteners, with subsequent governing failures being panel loss due to failures at the purlin-to-truss connections and failures of the truss-to-wall connections. In-plane wall failures and masonry uplift failures were both found to occur at much higher wind speeds than roof failures. To improve the hurricane performance, several feasible modifications are suggested, including installing hurricane straps at both the truss-to-wall and the purlin-to-truss connections, as well as improving the panel-fastener interface. In the construction of new roofs, this study found that using reduced spacing between roof members, hip roofs instead of gable roofs, and higher roof slopes leads to improved performance. These recommendations can make houses built through informal construction processes safer and more resilient to hurricanes as a form of climate adaptation.There is an urgent need to improve community capacity to recover more effectively after disasters through safer design and construction practices. To do this, training programs need to foster an improved understanding of shelter design and construction to withstand future wind and earthquake events. This project analyzed informal builders’ perceptions of housing safety in Puerto Rico (responding to 2017's Hurricane Maria and the 2019-2020 earthquake swarm) and homeowner’s perceptions of housing safety in Philippines (responding to 2013's Typhoon Haiyan and 2017's Ormoc earthquake) to: (1) assess local understanding of shelter safety in multiple hazards, including causal factors influencing this understanding, through a household survey in the Philippines and a survey to informal contractors in Puerto Rico; (2) assess the expected performance of various post-disaster shelter typologies to quantify safety during future earthquake and wind events using performance-based engineering methods, developing a rapid screening tool that can be used in design or evaluation; (3) identify conflicts between perceived and assessed safety of shelter, and why these conflicts exist, by comparing engineering assessments with local perceptions; and (4) create a communication design for organizations assisting with training for safer housing construction. 
    more » « less
  3. Although organizations build housing in resource-limited contexts after typhoons and other disasters that is intended to be safer than what existed previously, the performance of these houses in future typhoons—and the factors influencing performance—are unknown. This study develops a component-level, performance-based wind engineering assessment framework and evaluates the wind performance of twelve semi-engineered post-disaster housing designs, representing thousands of houses that were constructed in the Philippines after Typhoon Yolanda. We found that roof panel loss likely occurs first for most designs, at wind speeds equivalent to a category 2 hurricane/signal 3 typhoon. Roof shape determines whether this loss is caused by failure at the panel-fastener interface or purlin-to-truss connection. However, houses with wooden frames and woven bamboo walls may also experience catastrophic racking failures at wind speeds equivalent to signal 2 or 3 typhoons, a situation exacerbated by strengthening the roof. Results also show that wind performance varied with roof shape, component spacing, panel thickness, eave length and connection between purlin and truss. Organizations can use these results to improve housing performance, taking specific care to increase wall capacity. This framework can be expanded to assess housing performance in other resource-limited contexts.There is an urgent need to improve community capacity to recover more effectively after disasters through safer design and construction practices. To do this, training programs need to foster an improved understanding of shelter design and construction to withstand future wind and earthquake events. This project analyzed informal builders’ perceptions of housing safety in Puerto Rico (responding to 2017's Hurricane Maria and the 2019-2020 earthquake swarm) and homeowner’s perceptions of housing safety in Philippines (responding to 2013's Typhoon Haiyan and 2017's Ormoc earthquake) to: (1) assess local understanding of shelter safety in multiple hazards, including causal factors influencing this understanding, through a household survey in the Philippines and a survey to informal contractors in Puerto Rico; (2) assess the expected performance of various post-disaster shelter typologies to quantify safety during future earthquake and wind events using performance-based engineering methods, developing a rapid screening tool that can be used in design or evaluation; (3) identify conflicts between perceived and assessed safety of shelter, and why these conflicts exist, by comparing engineering assessments with local perceptions; and (4) create a communication design for organizations assisting with training for safer housing construction. 
    more » « less
  4. More than 1.6 billion people worldwide live in informally constructed houses, many of which are reinforced with concrete. Patterns of past earthquake damage suggest that these homes have significant seismic vulnerabilities, endangering their occupants. The characteristics of these houses vary widely with local building practices. In addition, these vulnerabilities are potentially exacerbated by incremental construction practices and building practices that address wind/flood risk in multi-hazard environments. Yet, despite the ubiquity of this type of construction, there have not been efforts to systematically assess the seismic risks to support risk-reducing design and construction strategies. In this study, we developed a method to assess the seismic collapse capacity of informally constructed housing that accounts for local building practices and materials, quantifying the effect of building characteristics on collapse risk. We exercise the method to assess seismic performance of housing in the US. Caribbean Island of Puerto Rico, which has high seismic hazard and experiences frequent hurricanes. This analysis showed that heavy construction, often due to the addition of a second story, and the presence of an open ground story leads to a high collapse risk. Severely corroded steel bars could also worsen performance. Although houses with infill performed better than those with an open ground story, confined masonry construction techniques produced a major reduction in collapse risk when compared to infilled or open-frame construction. Infill construction with partial height walls performed very poorly. Well-built reinforced concrete column jackets and the addition of infill in open first-story bays can reduce the greater risks of open-ground-story houses. These findings, which are quantified in the results portion of this article, are intended to support the development of design and construction recommendations for safer housing.

     
    more » « less
  5. Ingenuity for El Ingenio is a case study to address the challenges that marginalized communities in Puerto Rico suffer, mostly from natural hazards, due to settlements in high-risk areas and deteriorating infrastructure. The case study was developed by an interdisciplinary group of students from the University of Puerto Rico - Río Piedras School of Architecture and students from the Department of Civil Engineering and Surveying and the Department of Electrical Engineering at the University of Puerto Rico - Mayagüez, as part of the course “Design-Build Project Delivery” in the RISE-UP program. The project contemplated spaces for a family/group of four people, in the neighborhood Ingenio in Toa Baja, Puerto Rico, which is a community exposed to multiple natural hazards including hurricanes, earthquakes, and floods. The design parameters for the project included a set budget of $40,000 USD for the construction of four temporary housing units, requirement to withstand the impact of multiple natural hazards, as well as being simple to build and be able to operate independent to power and water grids during an emergency. The resulting design provides 270 sq ft. of usable space and can partially function off the grid due to solar energy generation and water storage. Local materials were implemented, and a manual of components and suggested construction methods was developed. This experience showcases the benefits that an interdisciplinary-integrated approach to infrastructure design can have on producing rapid and efficient design solutions to challenges caused by natural hazards, in resilient and sustainable ways. 
    more » « less