skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Aye-aye’s middle finger kinematic modeling during tap-scanning
The aye-aye (Daubentonia madagascariensis) is a nocturnal lemur native to the island of Madagascar with a special thin middle finger. The aye-aye’s third digit (the slenderest one) has a remarkably specific adaptation, allowing it to perform tap-scanning (Finger tapping) to locate small cavities beneath tree bark and extract woodboring larvae from it. This finger, as an exceptional active acoustic actuator, makes an aye-aye’s biological system an attractive model for Nondestructive Evaluation (NDE) methods and robotic systems. Despite the important aspects of the topic in engineering sensory and NDE, little is known about the mechanism and movement of this unique finger. In this paper a simplified kinematic model was proposed to simulate the aye-aye’s middle finger motion.  more » « less
Award ID(s):
2047033
PAR ID:
10343980
Author(s) / Creator(s):
; ;
Editor(s):
Lakhtakia, Akhlesh; Martín-Palma, Raúl J.; Knez, Mato
Date Published:
Journal Name:
SPIE, Smart Structures/NDE, 300 Long Beach Blvd, Long Beach, CA, 2022
Page Range / eLocation ID:
7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The aye-aye (Daubentonia madagascariensis) is a nocturnal lemur native to the island of Madagascar with a unique thin middle finger. Its slender third digit has a remarkably specific adaptation, allowing them to perform tap-scanning to locate small cavities beneath tree bark and extract wood-boring larvae from it. As an exceptional active acoustic actuator, this finger makes an aye-aye’s biological system an attractive model for pioneering Nondestructive Evaluation (NDE) methods and robotic systems. Despite the important aspects of the topic in the aye-aye’s unique foraging and its potential contribution to the engineering sensory, little is known about the mechanism and dynamics of this unique finger. This paper used a motion-tracking approach for the aye-aye’s middle finger using simultaneous video graphic capture. To mimic the motion, a two-link robot arm model is designed to reproduce the trajectory. Kinematics formulations were proposed to derive the motion of the middle finger using the Lagrangian method. In addition, a hardware model was developed to simulate the aye-aye’s finger motion. To validate the model, different motion states such as trajectory paths and joint angles, were compared. The simulation results indicate the kinematics of the model were consistent with the actual finger movement. This model is used to understand the aye-aye’s unique tap-scanning process for pioneering new tap-testing NDE strategies for various inspection applications. 
    more » « less
  2. Lakhtakia, Akhlesh; Martín-Palma, Raúl J; Knez, Mato (Ed.)
    Researchers conventionally employ thermal imaging to monitor the health of animals, observe their habitat utilization, and track their activity patterns. These non-invasive methods can generate detailed images and offer valuable insights into behavior, movements, and environmental interactions. The aye-aye (Daubentonia madagascariensis), a rare and endangered lemur from Madagascar, possesses a uniquely slender third finger evolved for tapping surfaces at relatively high frequencies. The adaptation enables acoustic-based sensing to locate cavities with prey in trees to enhance their foraging abilities. The authors’ previous studies have demonstrated some descent simulating dynamic models of the aye-aye’s third digit referenced from limited data collected with monocular cameras, which can be challenging due to noisy and distorted images, impacting motion analysis adversely. In this proposed research, high-speed thermal cameras are employed to capture detailed finger position and orientation, providing a clearer understanding of the overall dynamic range. The improved biomimetic model aims to enhance tap-testing strategies in nondestructive evaluation for various inspection applications. 
    more » « less
  3. The aye-aye (Daubentonia madagascariensis) is one of the 25 most endangered primate species in the world, maintaining amongst the lowest genetic diversity of any primate measured to date. Characterizing patterns of genetic variation within aye-aye populations, and the relative influences of neutral and selective processes in shaping that variation, is thus important for future conservation efforts. In this study, we performed the first whole-genome scans for recent positive and balancing selection in the species, utilizing high-coverage population genomic data from newly sequenced individuals. We generated null thresholds for our genomic scans by creating an evolutionarily appropriate baseline model that incorporates the demographic history of this aye-aye population, and identified a small number of candidate genes. Most notably, a suite of genes involved in olfaction — a key trait in these nocturnal primates — were identified as experiencing long-term balancing selection. We also conducted analyses to quantify the expected statistical power to detect positive and balancing selection in this population using site frequency spectrum-based inference methods, once accounting for the potentially confounding contributions of population history, recombination and mutation rate variation, and purifying and background selection. This work, presenting the first high-quality, genome-wide polymorphism data across the functional regions of the aye-aye genome, thus provides important insights into the landscape of episodic selective forces in this highly endangered species. 
    more » « less
  4. Abstract The aye-aye (Daubentonia madagascariensis) is one of the 25 most endangered primate species in the world, maintaining amongst the lowest genetic diversity of any primate measured to date. Characterizing patterns of genetic variation within aye-aye populations, and the relative influences of neutral and selective processes in shaping that variation, is thus important for future conservation efforts. In this study, we performed the first whole-genome scans for positive and balancing selection in the species, utilizing high-coverage population genomic data from newly sequenced individuals. We generated null thresholds for our genomic scans by creating an evolutionarily appropriate baseline model that incorporates the demographic history of this aye-aye population, and identified a small number of candidate genes. Most notably, a suite of genes involved in olfaction—a key trait in these nocturnal primates—were identified as experiencing long-term balancing selection. We also conducted analyses to quantify the expected statistical power to detect positive and balancing selection in this population using site frequency spectrum–based inference methods, once accounting for the potentially confounding contributions of population history, mutation and recombination rate variation, as well as purifying and background selection. This work, presenting the first high-quality, genome-wide polymorphism data across the functional regions of the aye-aye genome, thus provides important insights into the landscape of episodic selective forces in this highly endangered species. 
    more » « less
  5. Abstract The nocturnal aye-aye, Daubentonia madagascariensis, is one of the most elusive lemurs on the island of Madagascar. The timing of its activity and arboreal lifestyle has generally made it difficult to obtain accurate assessments of population size using traditional census methods. Therefore, alternative estimates provided by population genetic inference are essential for yielding much needed information for conservation measures and for enabling ecological and evolutionary studies of this species. Here, we utilize genomic data from 17 individuals—including 5 newly sequenced, high-coverage genomes—to estimate this history. Essential to this estimation are recently published annotations of the aye-aye genome which allow for variation at putatively neutral genomic regions to be included in the estimation procedures, and regions subject to selective constraints, or in linkage to such sites, to be excluded owing to the biasing effects of selection on demographic inference. By comparing a variety of demographic estimation tools to develop a well-supported model of population history, we find strong support for two demes, separating northern Madagascar from the rest of the island. Additionally, we find that the aye-aye has experienced two severe reductions in population size. The first occurred rapidly, ∼3,000 to 5,000 years ago, and likely corresponded with the arrival of humans to Madagascar. The second occurred over the past few decades and is likely related to substantial habitat loss, suggesting that the species is still undergoing population decline and remains at great risk for extinction. 
    more » « less