skip to main content

Title: Clustering with Neighborhoods
In the standard planar k-center clustering problem, one is given a set P of n points in the plane, and the goal is to select k center points, so as to minimize the maximum distance over points in P to their nearest center. Here we initiate the systematic study of the clustering with neighborhoods problem, which generalizes the k-center problem to allow the covered objects to be a set of general disjoint convex objects C rather than just a point set P. For this problem we first show that there is a PTAS for approximating the number of centers. Specifically, if r_opt is the optimal radius for k centers, then in n^O(1/ε²) time we can produce a set of (1+ε)k centers with radius ≤ r_opt. If instead one considers the standard goal of approximating the optimal clustering radius, while keeping k as a hard constraint, we show that the radius cannot be approximated within any factor in polynomial time unless P = NP, even when C is a set of line segments. When C is a set of unit disks we show the problem is hard to approximate within a factor of (√{13}-√3)(2-√3) ≈ 6.99. This hardness result complements our more » main result, where we show that when the objects are disks, of possibly differing radii, there is a (5+2√3)≈ 8.46 approximation algorithm. Additionally, for unit disks we give an O(n log k)+(k/ε)^O(k) time (1+ε)-approximation to the optimal radius, that is, an FPTAS for constant k whose running time depends only linearly on n. Finally, we show that the one dimensional version of the problem, even when intersections are allowed, can be solved exactly in O(n log n) time. « less
Authors:
; ;
Editors:
Ahn, Hee-Kap; Sadakane, Kunihiko
Award ID(s):
1750780
Publication Date:
NSF-PAR ID:
10344039
Journal Name:
International Symposium on Algorithms and Computation (ISAAC)
Volume:
212
Issue:
6
Page Range or eLocation-ID:
6:1--6:17
Sponsoring Org:
National Science Foundation
More Like this
  1. We study a clustering problem where the goal is to maximize the coverage of the input points by k chosen centers. Specifically, given a set of n points P ⊆ ℝ^d, the goal is to pick k centers C ⊆ ℝ^d that maximize the service ∑_{p∈P}φ(𝖽(p,C)) to the points P, where 𝖽(p,C) is the distance of p to its nearest center in C, and φ is a non-increasing service function φ: ℝ+ → ℝ+. This includes problems of placing k base stations as to maximize the total bandwidth to the clients - indeed, the closer the client is to its nearest base station, the more data it can send/receive, and the target is to place k base stations so that the total bandwidth is maximized. We provide an n^{ε^-O(d)} time algorithm for this problem that achieves a (1-ε)-approximation. Notably, the runtime does not depend on the parameter k and it works for an arbitrary non-increasing service function φ: ℝ+ → ℝ+.
  2. Goaoc, Xavier ; Kerber, Michael (Ed.)
    We consider the following surveillance problem: Given a set P of n sites in a metric space and a set R of k robots with the same maximum speed, compute a patrol schedule of minimum latency for the robots. Here a patrol schedule specifies for each robot an infinite sequence of sites to visit (in the given order) and the latency L of a schedule is the maximum latency of any site, where the latency of a site s is the supremum of the lengths of the time intervals between consecutive visits to s. When k = 1 the problem is equivalent to the travelling salesman problem (TSP) and thus it is NP-hard. For k ≥ 2 (which is the version we are interested in) the problem becomes even more challenging; for example, it is not even clear if the decision version of the problem is decidable, in particular in the Euclidean case. We have two main results. We consider cyclic solutions in which the set of sites must be partitioned into 𝓁 groups, for some 𝓁 ≤ k, and each group is assigned a subset of the robots that move along the travelling salesman tour of the group atmore »equal distance from each other. Our first main result is that approximating the optimal latency of the class of cyclic solutions can be reduced to approximating the optimal travelling salesman tour on some input, with only a 1+ε factor loss in the approximation factor and an O((k/ε) ^k) factor loss in the runtime, for any ε > 0. Our second main result shows that an optimal cyclic solution is a 2(1-1/k)-approximation of the overall optimal solution. Note that for k = 2 this implies that an optimal cyclic solution is optimal overall. We conjecture that this is true for k ≥ 3 as well. The results have a number of consequences. For the Euclidean version of the problem, for instance, combining our results with known results on Euclidean TSP, yields a PTAS for approximating an optimal cyclic solution, and it yields a (2(1-1/k)+ε)-approximation of the optimal unrestricted (not necessarily cyclic) solution. If the conjecture mentioned above is true, then our algorithm is actually a PTAS for the general problem in the Euclidean setting. Similar results can be obtained by combining our results with other known TSP algorithms in non-Euclidean metrics.« less
  3. Given a data set of size n in d'-dimensional Euclidean space, the k-means problem asks for a set of k points (called centers) such that the sum of the l_2^2-distances between the data points and the set of centers is minimized. Previous work on this problem in the local differential privacy setting shows how to achieve multiplicative approximation factors arbitrarily close to optimal, but suffers high additive error. The additive error has also been seen to be an issue in implementations of differentially private k-means clustering algorithms in both the central and local settings. In this work, we introduce a new locally private k-means clustering algorithm that achieves near-optimal additive error whilst retaining constant multiplicative approximation factors and round complexity. Concretely, given any c>sqrt(2), our algorithm achieves O(k^(1 + O(1/(2c^2-1))) * sqrt(d' n) * log d' * poly log n) additive error with an O(c^2) multiplicative approximation factor.
  4. Establishing the complexity of {\em Bounded Distance Decoding} for Reed-Solomon codes is a fundamental open problem in coding theory, explicitly asked by Guruswami and Vardy (IEEE Trans. Inf. Theory, 2005). The problem is motivated by the large current gap between the regime when it is NP-hard, and the regime when it is efficiently solvable (i.e., the Johnson radius). We show the first NP-hardness results for asymptotically smaller decoding radii than the maximum likelihood decoding radius of Guruswami and Vardy. Specifically, for Reed-Solomon codes of length $N$ and dimension $K=O(N)$, we show that it is NP-hard to decode more than $ N-K- c\frac{\log N}{\log\log N}$ errors (with $c>0$ an absolute constant). Moreover, we show that the problem is NP-hard under quasipolynomial-time reductions for an error amount $> N-K- c\log{N}$ (with $c>0$ an absolute constant). An alternative natural reformulation of the Bounded Distance Decoding problem for Reed-Solomon codes is as a {\em Polynomial Reconstruction} problem. In this view, our results show that it is NP-hard to decide whether there exists a degree $K$ polynomial passing through $K+ c\frac{\log N}{\log\log N}$ points from a given set of points $(a_1, b_1), (a_2, b_2)\ldots, (a_N, b_N)$. Furthermore, it is NP-hard under quasipolynomial-time reductions to decidemore »whether there is a degree $K$ polynomial passing through $K+c\log{N}$ many points. These results follow from the NP-hardness of a generalization of the classical Subset Sum problem to higher moments, called {\em Moments Subset Sum}, which has been a known open problem, and which may be of independent interest. We further reveal a strong connection with the well-studied Prouhet-Tarry-Escott problem in Number Theory, which turns out to capture a main barrier in extending our techniques. We believe the Prouhet-Tarry-Escott problem deserves further study in the theoretical computer science community.« less
  5. The Sparsest Cut is a fundamental optimization problem that have been extensively studied. For planar inputs the problem is in P and can be solved in Õ(n 3 ) time if all vertex weights are 1. Despite a significant amount of effort, the best algorithms date back to the early 90’s and can only achieve O(log n)-approximation in Õ(n) time or 3.5-approximation in Õ(n 2 ) time [Rao, STOC92]. Our main result is an Ω(n 2−ε ) lower bound for Sparsest Cut even in planar graphs with unit vertex weights, under the (min, +)-Convolution conjecture, showing that approxima- tions are inevitable in the near-linear time regime. To complement the lower bound, we provide a 3.3-approximation in near-linear time, improving upon the 25-year old result of Rao in both time and accuracy. We also show that our lower bound is not far from optimal by observing an exact algorithm with running time Õ(n 5/2 ) improving upon the Õ(n 3 ) algorithm of Park and Phillips [STOC93]. Our lower bound accomplishes a repeatedly raised challenge by being the first fine-grained lower bound for a natural planar graph problem in P. Building on our construction we prove near-quadratic lower bounds under SETHmore »for variants of the closest pair problem in planar graphs, and use them to show that the popular Average-Linkage procedure for Hierarchical Clustering cannot be simulated in truly subquadratic time. At the core of our constructions is a diamond-like gadget that also settles the complexity of Diameter in distributed planar networks. We prove an Ω(n/ log n) lower bound on the number of communication rounds required to compute the weighted diameter of a network in the CONGET model, even when the underlying graph is planar and all nodes are D = 4 hops away from each other. This is the first poly(n) lower bound in the planar-distributed setting, and it complements the recent poly(D, log n) upper bounds of Li and Parter [STOC 2019] for (exact) unweighted diameter and for (1 + ε) approximate weighted diameter.« less