skip to main content


Title: Paleoenvironmental and paleoclimatic evolution and cyclo- and chrono-stratigraphy of upper Permian-Lower Triassic fluvial-lacustrine deposits in Bogda Mountains, NW China – Implications for diachronous plant evolution across the Permian-Triassic Boundary
Stratigraphic sections in the Bogda Mountains, NW China, provide detailed records of late Permian–Early Triassic terrestrial paleoenvironmental and paleoclimatic evolution at the paleo-mid-latitude of NE Pangea. The sections are located in the Tarlong-Taodonggou, Dalongkou, and Zhaobishan areas, ~100 km apart, and ~5000 m in total thickness. An age model was constructed using seven high-resolution U-Pb zircon CA-TIMS dates in the Tarlong-Taodonggou sections and projected to sections in two other areas to convert the litho- and cyclo-stratigraphy into a chronostratigraphy. Sediments were deposited in braided and meandering streams, and lacustrine deltaic and lakeplain-littoral environments. A cyclostratigraphy was established on the basis of repetitive environmental changes for high-order cycles, stacking patterns of high-order cycles, and long-term climatic and tectonic trends for low-order cycles (LC). Sedimentary evidence from the upper Wuchiapingian–mid Induan Wutonggou LC indicates that the climate was generally humid-subhumid and gradually became variable toward a seasonally dry condition in the early Induan. Lush vegetation had persisted across the Permo–Triassic boundary into the early Induan. A subhumid-semiarid condition prevailed during the deposition of mid Induan–lower Olenekian Jiucaiyuan and lower Olenekian Shaofanggou LCs. These three LCs are largely continuous and separated by conformities and diastems. Intra- and inter-graben stratigraphic variability is reflected by variations in thickness, depositional system, and average sedimentation rate, and results in variable spatial and temporal stratigraphic resolution. Such stratigraphic variability is mainly controlled by paleogeographic location, depocenter shift, and episodic uplift and subsidence in the source areas and catchment basin. A changeover of plant communities occurred during the early Induan, postdating the end-Permian marine mass extinction. However, riparian vegetation and upland forests were still present from the mid Induan to early Olenekian, and served as primary food source for terrestrial ecosystems, including vertebrates. Correlation of the vascular plant evolutionary history from the latest Changhsingian to early Induan in the Bogda Mountains with those reported from Australia and south China indicates a diachronous floral changeover on Pangea. The late Permian–Early Triassic litho-, cyclo- and chrono-stratigraphies, constrained by the age model, providesfoundation for future studies on the evolution of continental sedimentary, climatic, biologic, and ecological systems in the Bogda region. It also provides a means to correlate terrestrial events in the mid-paleolatitudes with marine and nonmarine records in the other parts of the world.  more » « less
Award ID(s):
1714829
NSF-PAR ID:
10344300
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Earthscience reviews
Volume:
222
ISSN:
0012-8252
Page Range / eLocation ID:
103741
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stratigraphic sections in the Bogda Mountains, NW China, provide detailed records of late Permian–Early Triassic terrestrial paleoenvironmental and paleoclimatic evolution at the paleo-mid-latitude of NE Pangea. The sections are located in the Tarlong-Taodonggou, Dalongkou, and Zhaobishan areas, ~100 km apart, and ~5000 m in total thickness. An age model was constructed using seven high-resolution U-Pb zircon CA-TIMS dates in the Tarlong-Taodonggou sections and projected to sections in two other areas to convert the litho- and cyclo-stratigraphy into a chronostratigraphy. Sediments were deposited in braided and meandering streams, and lacustrine deltaic and lakeplain-littoral environments. A cyclostratigraphy was established on the basis of repetitive environmental changes for high-order cycles, stacking patterns of high-order cycles, and long-term climatic and tectonic trends for low-order cycles (LC). Sedimentary evidence from the upper Wuchiapingian–mid Induan Wutonggou LC indicates that the climate was generally humid-subhumid and gradually became variable toward a seasonally dry condition in the early Induan. Lush vegetation had persisted across the Permo–Triassic boundary into the early Induan. A subhumid-semiarid condition prevailed during the deposition of mid Induan–lower Olenekian Jiucaiyuan and lower Olenekian Shaofanggou LCs. These three LCs are largely continuous and separated by conformities and diastems. Intra- and inter-graben stratigraphic variability is reflected by variations in thickness, depositional system, and average sedimentation rate, and results in variable spatial and temporal stratigraphic resolution. Such stratigraphic variability is mainly controlled by paleogeographic location, depocenter shift, and episodic uplift and subsidence in the source areas and catchment basin. A changeover of plant communities occurred during the early Induan, postdating the end-Permian marine mass extinction. However, riparian vegetation and upland forests were still present from the mid Induan to early Olenekian, and served as primary food source for terrestrial ecosystems, including vertebrates. Correlation of the vascular plant evolutionary history from the latest Changhsingian to early Induan in the Bogda Mountains with those reported from Australia and south China indicates a diachronous floral changeover on Pangea. The late Permian–Early Triassic litho-, cyclo- and chrono-stratigraphies, constrained by the age model, provides a foundation for future studies on the evolution of continental sedimentary, climatic, biologic, and ecological systems in the Bogda region. It also provides a means to correlate terrestrial events in the mid-paleolatitudes with marine and nonmarine records in the other parts of the world. 
    more » « less
  2. The Junggar and Turpan basins of Xinjiang, northwest China, host a well-preserved terrestrial Permo-Triassic boundary sequence exposed on the flanks of the Bogda Mountains. During the Permo-Triassic, this region was located in mid-latitude northeast Pangaea (~45°N), making it an important comparison to the higher latitude record preserved in the South African Karoo Basin (~60°S). Broad similarities exist between the tetrapod records of both areas, such as the reported co-occurrence of Dicynodon-grade dicynodontoids and Lystrosaurus in the upper Permian and the high abundance of Lystrosaurus in the Lower Triassic. In the Bogda sections, the Permo-Triassic boundary falls within the upper Guodikeng Formation (= upper Wutonggou low order cycle), but several horizons have been proposed based on biostratigraphy, chemostratigraphy, and paleomagnetic data. A new Bayesian age model calibrated by multiple radiometric dates and tied to detailed litho- and cyclostratigraphic data offers new insight into the location of the Permo-Triassic boundary in Xinjiang and the opportunity to reconsider tetrapod occurrences in a highly resolved chronostratigraphic framework. We investigated the positions of new and historic tetrapod specimens relative to the revised Permo-Triassic boundary, including uncertainties about the locations of key historic specimens. The stratigraphic range of Dicynodon-grade dicynodontoids in Xinjiang is poorly constrained: most specimens, including the holotype of Jimusaria sinkianensis, cannot be precisely placed relative to the Permo-Triassic boundary. A new specimen of Turfanodon sp. for which we have reliable data occurs in the upper Permian. Despite their previous treatment as Permian in age, most Bogda chroniosuchians were collected in strata above the Permo- Triassic boundary and the therocephalian Dalongkoua fuae also may be Triassic. Some prior placements of the Permo- Triassic boundary in Xinjiang imply an upper Permian lowestoccurrence for Lystrosaurus, but all Lystrosaurus specimens that we can precisely locate fall above the Permo-Triassic boundary. The high abundance of Lystrosaurus in the Early Triassic of Xinjiang likely parallels an Early Triassic age for the interval of greatest Lystrosaurus abundance in the Karoo Basin, but additional research is needed to determine whether there was a single, globally synchronous time of highest Lystrosaurus abundance. 
    more » « less
  3. ABSTRACT The Bogda Mountains, Xianjiang Uygur Autonomous Region, western China, expose an uppermost Permian–Lower Triassic succession of fully continental strata deposited across three graben (half graben) structures in the mid-paleolatitudes of Pangea. A cyclostratigraphy scheme developed for the succession is subdivided into three low-order cycles (Wutonggou, Jiucaiyuan, Shaofanggou). Low-order cycles are partitioned into 1838 high-order cycles based on repetitive environmental changes, and their plant taphonomic character is assessed in > 4700 m of high-resolution, measured sections distributed across ∼ 100 km. Four taphonomic assemblages are represented by: permineralized wood (both autochthonous and allochthonous), megafloral adpressions (?parautochthonous and allochthonous) identifiable to systematic affinity, unidentifiable (allochthonous) phytoclasts concentrated or disseminated on bedding, and (autochthonous) rooting structures of various configurations (carbon films to rhizoconcretions). Their temporal and spatial occurrences vary across the study area and are dependent on the array of depositional environments exposed in any particular locality. Similar to paleobotanical results in other fully continental basins, megafloral elements are rarely encountered. Both wood (erect permineralized stumps and prostrate logs) and adpressions are found in < 2% of meandering river and limnic cycles, where sediment accumulated under semi-arid to humid conditions. The absence of such assemblages in river-and-lake deposits is more likely related to physical or geographical factors than it is to an absence of organic-matter contribution. With such a low frequency, no predictable pattern or trend to their occurrence can be determined. This is also true for any horizon in which rooting structures are preserved, although paleosols occur in all or parts of high-order cycles developed under arid to humid conditions. Physical rooting structures are encountered in only 23% of these and are not preserved equally across space and time. Allochthonous phytoclasts are the most common taphonomic assemblage, preserved in association with micaceous minerals on bedding in fine-grained lithofacies. The consistency of phytoclast assemblages throughout the succession is empirical evidence for the presence of riparian vegetation during a time when models propose the catastrophic demise of land plants, and does not support an interpretation of vegetational demise followed by long-term recovery across the crisis interval in this basin. These mesofossil and microfossil (palynological) assemblages offer the best opportunity to understand the effects of the crisis on the base of terrestrial ecosystems. 
    more » « less
  4. null (Ed.)
    Abstract This study investigates the provenance of sedimentary rocks in Bogda Mountains, NW China, and reconstructs the lithology and unroofing history of the Eastern North Tianshan Suture. Petrographic point counting data of sandstones and compositions of conglomerates of upper Permian-lowermost Triassic Wutonggou low-order cycle from Zhaobishan, North Tarlong, Taodonggou, and Dalongkou sections in the southern and northern foothills of Bogda Mountains were used to interpret the temporal and spatial variations of lithology of the Eastern North Tianshan Suture, which is the sediment source area. Three compositional trends were identified. A trend of upward-increasing quartz content and granitic pebbles in Zhaobishan section suggests a change from the undissected volcanic arc, accretionary wedge and trench setting to predominantly transitional volcanic arc and subordinate accretionary wedge and trench, in the eastern part of the Eastern North Tianshan Suture. In North Tarlong and Taodonggou sections, however, the lithic content decreases and the contents of quartz and granitic pebbles increase up sections. These trends indicate that the western part of the Eastern North Tianshan Suture changed from an undissected volcanic arc to the transitional volcanic arc, accretionary wedge and trench. No clear trend in the lithic-rich sandstones of the Dalongkou section indicates that sediments were derived from the undissected volcanic arc in the Eastern North Tianshan Suture and local rift shoulders. Compositional variations of studied rocks suggest that the Eastern North Tianshan Suture was an amalgamated complex with great spatial and temporal heterogeneities in lithology and experienced persistent unroofing during late Permian-earliest Triassic. This study reconstructs a key element of the Chinese Tianshan Suture and serves as an example to understand the unroofing processes of ancient sutures. 
    more » « less
  5. The Whitehorse Group and Quartermaster Formation are extensive red-bed terrestrial sequences representing the final episode of sedimentation in the Palo Duro Basin in north-central Texas, U.S.A. Regionally, these strata record the culmination of a long-term regression sequence beginning in the middle to late Permian. The Whitehorse Group includes beds of abundant laminated to massive red quartz siltstone to fine sandstone and rare dolomite, laminated to massive gypsum, and claystones, as well as diagenetic gypsum. The Quartermaster Formation exhibits a change from nearly equal amounts of thin planar and lenticular fine sandstone and laminated to massive mudstone in its lower half to overlying strata with coarser-grained, cross-bedded sandstones indicative of meandering channels up to 7 m deep and rare overbank mudstones. Paleosols are absent in the Upper Whitehorse Group and only poorly developed in the Quartermaster Formation. Volcanic ash-fall deposits (tuffs) present in uppermost Whitehorse Group and lower Quartermaster Formation strata permit correlation among five stratigraphic sections distributed over ∼150 km and provide geochronologic age information for these rocks. Both the Whitehorse Group and Quartermaster Formation have traditionally been assigned to the late Permian Ochoan (Changhsingian) stage, and workers assumed that the Permian-Triassic boundary is characterized by a regionally significant unconformity. Chemostratigraphic or biostratigraphic evidence for this age assignment, however, have been lacking to date. Single zircon U-Pb CA-TIMS analyses from at least two distinct volcanic ash fall layers in the lower Quartermaster Formation, which were identified and collected from five different localities across the Palo Duro Basin, yield interpreted depositional ages ranging from 252.19 ± 0.30 to 251.74 ± 0.28 Ma. Single zircon U-Pb CA-TIMS analyses of detrital zircons from sandstones located only a few meters beneath the top of the Quartermaster Formation yield a range of dates from Mesoproterozoic (1418 Ma) to Middle Triassic (244.5 Ma; Anisian), the latter of which is interpreted as a maximum depositional age, which is no older than Anisian, thus indicating the Permian-Triassic boundary to lie somewhere within the lower Quartermaster Formation/upper Whitehorse Group succession. Stable carbon isotope data from 180 samples of early-burial dolomicrite cements preserve a chemostratigraphic signal that is similar among sections, with a large ∼−8‰ negative isotope excursion ∼20 m beneath the Whitehorse Group-Quartermaster Formation boundary. This large negative carbon isotope excursion is interpreted to be the same excursion associated with the end-Permian extinction and this is in concert with the new high precision radioisotopic age data presented and the fact that the excursion lies within a normal polarity stratigraphic magnetozone. Dolomite cement δ 13 C values remain less negative (between about −5 and −8 permil) into the lower part of the Quartermaster Formation before becoming more positive toward the top of the section. This long interval of negative δ 13 C values in the Quartermaster Formation is interpreted to represent the earliest Triassic (Induan) inception of biotic and ecosystem “recovery.” Oxygen isotope values of dolomicrite cements show a progressive trend toward more positive values through the boundary interval, suggesting substantially warmer conditions around the end-Permian extinction event and a trend toward cooler conditions after the earliest Triassic. Our observations on these strata show that the paleoenvironment and paleoclimate across the Permian-Triassic boundary in western, sub-equatorial Pangea was characterized by depositional systems that were not conducive to plant preservation. 
    more » « less