Motivation: This is a complete paper. There was a sudden shift from traditional learning to online learning in Spring 2020 with the outbreak of COVID-19. Although online learning is not a new topic of discussion, universities, faculty, and students were not prepared for this sudden change in learning. According to a recent article in ‘The Chronicle of Higher Education, “even under the best of circumstances, virtual learning requires a different, carefully crafted approach to engagement”. The Design Thinking course under study is a required freshmen level course offered in a Mid-western University. The Design Thinking course is offered in a flipped format where all the content to be learned is given to students beforehand and the in-class session is used for active discussions and hands-on learning related to the content provided at the small group level. The final learning objective of the course is a group project where student groups are expected to come up with functional prototypes to solve a real-world problem following the Design Thinking process. There were eighteen sections of the Design Thinking course offered in Spring 2020, and with the outbreak of COVID-19, a few instructors decided to offer synchronous online classes (where instructors were present online during class time and provided orientation and guidance just like a normal class) and a few others decided to offer asynchronous online classes (where orientation from the instructor was delivered asynchronous and the instructor was online during officially scheduled class time but interactions were more like office hours). Students were required to be present synchronously at the team level during the class time in a synchronous online class. In an asynchronous online class, students could be synchronous at the team level to complete their assignment any time prior to the deadline such that they could work during class time but they were not required to work at that time. Through this complete paper, we are trying to understand student learning, social presence and learner satisfaction with respect to different modes of instruction in a freshmen level Design Thinking course. Background: According to literature, synchronous online learning has advantages such as interaction, a classroom environment, and better course quality whereas asynchronous online learning has advantages such as self-controlled and self-directed learning. The disadvantages of synchronous online learning include the learning process, technology issues, and distraction. Social isolation, lack of interaction, and technology issue are a few disadvantages related to asynchronous online learning. Problem Being Addressed: There is a limited literature base investigating different modes of online instruction in a Design Thinking course. Through this paper, we are trying to understand and share the effectiveness of synchronous and asynchronous modes of instruction in an online Flipped Design Thinking Course. The results of the paper could also help in this time of pandemic by shedding light on the more effective way to teach highly active group-based classrooms for better student learning, social presence, and learner satisfaction. Method/Assessment: An end of semester survey was monitored in Spring 2020 to understand student experiences in synchronous and asynchronous Design Thinking course sections. The survey was sent to 720 students enrolled in the course in Spring 2020 and 324 students responded to the survey. Learning was measured using the survey instrument developed by Walker (2003) and the social presence and learner satisfaction was measured by the survey modified by Richardson and Swan (2003). Likert scale was used to measure survey responses. Anticipated Results: Data would be analyzed and the paper would be completed by draft paper submission. As the course under study is a flipped and active course with a significant component of group work, the anticipated results after analysis could be that one mode of instruction has higher student learning, social presence, and learner satisfaction compared to the other. 
                        more » 
                        « less   
                    
                            
                            Learning from Universities’ Responses to the COVID-19 Pandemic: Lessons for the New Normal.
                        
                    
    
            The pandemic has negatively impacted many students’ ability to continue schooling, or to do so with the same level of success. What is not well understood is how universities’ responses to pandemic-induced changes helped or hindered students’ success during the spring 2020 transitions to online learning. To better understand campus closures and transitions to online and blended learning, this paper explores students’ perceptions of their universities’ handling of and responses to the pandemic and which actions and resources would better support their success in the new normal. It is important to understand the impacts of universities’ responses on students not only because some changes are likely here to stay, but also because pivots caused by pandemics may be required with increasing frequency in the future. The data came from an online survey conducted in the United States in spring and summer of 2020. The survey respondents were 669 undergraduate engineering students from 140 institutions. Student responses addressed several distinct groups of stakeholders with most related to individual instructors, followed by academic administrators, and counseling and disability service centres. Less prominent but still important themes related to other groups were also identified. Responses for each of these groups are presented in turn, and the paper concludes with recommendations for each group. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2029206
- PAR ID:
- 10344347
- Date Published:
- Journal Name:
- European Society for Engineering Education Annual Conference 2021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Lisa Benson (Ed.)Abstract Background In Spring 2020, the COVID-19 pandemic sent universities into emergency remote education. The pandemic has been disruptive but offers the opportunity to learn about ways to support students in other situations where abrupt changes to teaching and learning are necessary. Purpose/Hypothesis We described the responses of engineering and computer science students to a series of prompts about their experiences with remote learning. Design/Method Data about students' remote learning experiences were collected from undergraduate engineering and computer science students at four different universities through an end-of-semester survey. Descriptive statistics were calculated, and qualitative responses were analyzed using qualitative content analysis through the lenses of master narrative theory and sociocultural theory. Results Student responses revealed how their individual circumstances combined to reduce motivation, create home environments detrimental to completing schoolwork, and increase stress. Many students described the negative impacts of remote learning, but some students found positive aspects of the situation. The majority of students did not indicate a change in their desire or plans to pursue engineering or computer science majors. Conclusions There was wide variation in how students experienced the disruption to university learning during Spring 2020. Implications of this paper can help not only in cases where emergency remote learning is needed in the future but also as universities seek to return to “normal” operations in 2022 and beyond.more » « less
- 
            The COVID-19 pandemic caused extensive disruption to higher education, highlighting the negative impacts of emergency shift to online instruction. As a result, advantages of intentionally designed, online programs in higher education were overshadowed during the pandemic. Furthermore, socioeconomic disparities were exacerbated during the pandemic which extended to STEM undergraduate transfer students, who are more likely to be low-income, from historically underrepresented groups, older, and first generation in their family to attend college. To better understand the impact of the pandemic on STEM undergraduates, including those in an intentionally designed online program, ordinal regression analysis of 352 student survey respondents enrolled in a life sciences major at a large, R1 institution in the United States spring 2020 through fall 2021 was performed. Three student types are compared: on-campus, first-time in college (FTIC); on-campus transfer (OC-TR); and online transfer (ONL-TR) students. The latter group receives all course delivery online, whereas on-campus student groups received predominately in-person course delivery prior to the pandemic. ONL-TR students were over six times less likely to report negative educational impact compared to on-campus students, FTIC and OC-TR, while controlling for parent education, income, gender, race/ethnicity, and GPA. Additional survey items further explored this result and were validated with academic records and thematic analysis of students’ text responses. A pre−/post-pandemic comparison revealed that students maintained a similar course load and GPA, despite increased perceptions of a lower GPA during the pandemic. OC-TR students were over two times more likely to express increased concern related to delayed graduation and higher frequency of feeling stress compared to FTIC and ONL-TR students. Meanwhile, low-income students were more likely to report stressors due to the pandemic’s impact on daily life, independent of student type. Taken together, students in this intentionally designed online program were more resilient to the educational and emotional impacts of the pandemic compared to on-campus students. The differences between student groups warn against generalization of student impacts and suggest further research into the positive role of online learning, not just for delivery of educational content and expanding access, but for academic and emotional stability for different student populations.more » « less
- 
            ABSTRACT Test anxiety is a common experience shared by college students and is typically investigated in the context of traditional, face-to-face courses. However, the onset of the COVID-19 pandemic resulted in the closure of universities, and many students had to rapidly shift to and balance the challenges of online learning. We investigated how the shift to online learning during the pandemic impacted trait (habitual) and state (momentary) test anxiety and whether there was variation across different demographic groups already vulnerable to performance gaps in science, technology, engineering, and mathematics (STEM) courses. Quantitative analyses revealed that trait and state test anxiety were lower in Spring 2020 (COVID semester) than in Spring 2019 and were higher overall in women than men. We did not find a difference in either trait or state anxiety in first-generation students or among persons excluded because of ethnicity or race. Qualitative analyses revealed that student priorities shifted away from coursework during Spring 2020. While students initially perceived the shift to online learning as beneficial, 1 month after the shift, students reported more difficulties studying and completing their coursework. Taken together, these results are the first to compare reports of test anxiety during a traditional, undisrupted semester to the semester where COVID-19 forced a sudden transition online.more » « less
- 
            null (Ed.)The current COVID-19 pandemic has forced many colleges and universities to remain on a completely online or remote educational learning environment for the 2020 Spring and Fall semesters, however there is a growing concern in STEM fields about how students will be able to achieve one of the major ABET learning outcomes without conducting physical, hands on laboratory exercises as many STEM disciplines are switching to virtual laboratory; an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering/scientific judgment to draw conclusions. In addition to the limited achievement of the ABET outcomes, roughly half of the population of a historically black university communicated their anxieties during the pandemic to the University President via Change.org. The students’ main anxiety is portrayed in a statement culled from the petition as follows: “Most classes are very hands-on, and we are not able to do those from home because of the limited resources available at home”. This paper highlights the best practices for the implementation of home-based hands-on activities across multiple STEM fields. The paper further elaborates on the impact of remote and virtual labs on students’ attitude, interest, and performance in STEM over the home-based hands-on experimentation. Home-based hands-on laboratory activities were performed in biology, electrical engineering, industrial engineering, transportation system, and civil engineering. The results of a Motivated Strategies for Learning Questionnaires (MLSQ) survey that was administered to about 100 STEM students revealed better gains in key constructs associated with student success, such as motivation, critical thinking, and metacognition.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    