We study the alignments of galaxy spin axes with respect to cosmic web filaments as a function of various properties of the galaxies and their constituent bulges and discs. We exploit the SAMI Galaxy Survey to identify 3D spin axes from spatially resolved stellar kinematics and to decompose the galaxy into the kinematic bulge and disc components. The GAMA survey is used to reconstruct the cosmic filaments. The mass of the bulge, defined as the product of stellar mass and bulge-to-total flux ratio Mbulge = M⋆ × (B/T), is the primary parameter of correlation with spin–filament alignments: galaxies with lower bulge masses tend to have their spins parallel to the closest filament, while galaxies with higher bulge masses are more perpendicularly aligned. M⋆ and B/T separately show correlations, but they do not fully unravel spin–filament alignments. Other galaxy properties, such as visual morphology, stellar age, star formation activity, kinematic parameters, and local environment, are secondary tracers. Focussing on S0 galaxies, we find preferentially perpendicular alignments, with the signal dominated by high-mass S0 galaxies. Studying bulge and disc spin–filament alignments separately reveals additional information about the formation pathways of the corresponding galaxies: bulges tend to have more perpendicular alignments, while discs show different tendencies according to their kinematic features and the mass of the associated bulge. The observed correlation between the flipping of spin–filament alignments and the growth of the bulge can be explained by mergers, which drive both alignment flips and bulge formation.
- Award ID(s):
- 2020295
- NSF-PAR ID:
- 10344393
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 509
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 1764 to 1778
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT Galaxies exhibit coherent alignments with local structure in the Universe. This effect, called intrinsic alignments (IAs), is an important contributor to the systematic uncertainties for wide-field weak lensing surveys. On cosmological distance scales, intrinsic shape alignments have been observed in red galaxies, which are usually bulge-dominated; while blue galaxies, which are mostly disc-dominated, exhibit shape alignments consistent with a null detection. However, disc-dominated galaxies typically consist of two prominent structures: disc and bulge. Since the bulge component has similar properties as elliptical galaxies and is thought to have formed in a similar fashion, naturally one could ask whether the bulge components exhibit similar alignments as ellipticals? In this paper, we investigate how different components of galaxies exhibit IA in the TNG100-1 cosmological hydrodynamical simulation, as well as the dependence of IA on the fraction of stars in rotation-dominated structures at $z$ = 0. The measurements were controlled for mass differences between the samples. We find that the bulges exhibit significantly higher IA signals, with a non-linear alignment model amplitude of $A_I = 2.98^{+0.36}_{-0.37}$ compared to the amplitude for the galaxies as a whole (both components), $A_I = 1.13^{+0.37}_{-0.35}$. The results for bulges are statistically consistent with those for elliptical galaxies, which have $A_I = 3.47^{+0.57}_{-0.57}$. These results highlight the importance of studying galaxy dynamics in order to understand galaxy alignments and their cosmological implications.
-
ABSTRACT We use comparisons between the Sydney-AAO Multi-object Integral Field Spectrograph (SAMI) Galaxy Survey and equilibrium galaxy models to infer the importance of disc fading in the transition of spirals into lenticular (S0) galaxies. The local S0 population has both higher photometric concentration and lower stellar spin than spiral galaxies of comparable mass and we test whether this separation can be accounted for by passive aging alone. We construct a suite of dynamically self-consistent galaxy models, with a bulge, disc, and halo using the galactics code. The dispersion-dominated bulge is given a uniformly old stellar population, while the disc is given a current star formation rate putting it on the main sequence, followed by sudden instantaneous quenching. We then generate mock observables (r-band images, stellar velocity, and dispersion maps) as a function of time since quenching for a range of bulge/total (B/T) mass ratios. The disc fading leads to a decline in measured spin as the bulge contribution becomes more dominant, and also leads to increased concentration. However, the quantitative changes observed after 5 Gyr of disc fading cannot account for all of the observed difference. We see similar results if we instead subdivide our SAMI Galaxy Survey sample by star formation (relative to the main sequence). We use EAGLE simulations to also take into account progenitor bias, using size evolution to infer quenching time. The EAGLE simulations suggest that the progenitors of current passive galaxies typically have slightly higher spin than present day star-forming disc galaxies of the same mass. As a result, progenitor bias moves the data further from the disc fading model scenario, implying that intrinsic dynamical evolution must be important in the transition from star-forming discs to passive discs.more » « less
-
We investigate structural properties of massive galaxy populations in the central regions (< 0.7 r 500 ) of five very massive ( M 200 > 4 × 10 14 M ⊙ ), high-redshift (1.4 ≲ z ≲ 1.7) galaxy clusters from the 2500 deg 2 South Pole Telescope Sunyaev Zel’dovich effect (SPT-SZ) survey. We probe the connection between galaxy structure and broad stellar population properties at stellar masses of log( M / M ⊙ ) > 10.85. We find that quiescent and star-forming cluster galaxy populations are largely dominated by bulge- and disk-dominated sources, respectively, with relative contributions being fully consistent with those of field counterparts. At the same time, the enhanced quiescent galaxy fraction observed in these clusters with respect to the coeval field is reflected in a significant morphology-density relation, with bulge-dominated galaxies already clearly dominating the massive galaxy population in these clusters at z ∼ 1.5. At face value, these observations show no significant environmental signatures in the correlation between broad structural and stellar population properties. In particular, the Sersic index and axis ratio distribution of massive, quiescent sources are consistent with field counterparts, in spite of the enhanced quiescent galaxy fraction in clusters. This consistency suggests a tight connection between quenching and structural evolution towards a bulge-dominated morphology, at least in the probed cluster regions and galaxy stellar mass range, irrespective of environment-related processes affecting star formation in cluster galaxies. We also probe the stellar mass–size relation of cluster galaxies, and find that star-forming and quiescent sources populate the mass–size plane in a manner largely similar to their field counterparts, with no evidence of a significant size difference for any probed sub-population. In particular, both quiescent and bulge-dominated cluster galaxies have average sizes at fixed stellar mass consistent with their counterparts in the field.more » « less
-
ABSTRACT Using the IllustrisTNG simulations, we investigate the connection between galaxy morphology and star formation in central galaxies with stellar masses in the range 109–1011.5 M⊙. We quantify galaxy morphology by a kinematical decomposition of the stellar component into a spheroidal and a disc component (spheroid-to-total ratio, S/T) and by the concentration of the stellar mass density profile (C82). S/T is correlated with stellar mass and star formation activity, while C82 correlates only with stellar mass. Overall, we find good agreement with observational estimates for both S/T and C82. Low- and high-mass galaxies are dominated by random stellar motion, while only intermediate-mass galaxies (M⋆ ≈ 1010–1010.5 M⊙) are dominated by ordered rotation. Whereas higher mass galaxies are typical spheroids with high concentrations, lower mass galaxies have low concentration, pointing to different formation channels. Although we find a correlation between S/T and star formation activity, in the TNG model galaxies do not necessarily change their morphology when they transition through the green valley or when they cease their star formation, this depending on galaxy stellar mass and morphological estimator. Instead, the morphology (S/T and C82) is generally set during the star-forming phase of galaxies. The apparent correlation between S/T and star formation arises because earlier forming galaxies had, on average, a higher S/T at a given stellar mass. Furthermore, we show that mergers drive in situ bulge formation in intermediate-mass galaxies and are responsible for the recent spheroidal mass assembly in the massive galaxies with M⋆ > 1011 M⊙. In particular, these massive galaxies assemble about half of the spheroidal mass while star-forming and the other half through mergers while quiescent.more » « less