skip to main content


Title: Probabilistic model for dynamic galaxy decomposition
ABSTRACT In the era of precision cosmology and ever-improving cosmological simulations, a better understanding of different galaxy components such as bulges and discs will give us new insight into galactic formation and evolution. Based on the fact that the stellar populations of the constituent components of galaxies differ by their dynamical properties, we develop two simple models for galaxy decomposition using the TNG100 cosmological hydrodynamical simulation from the IllustrisTNG project. The first model uses a single dynamical parameter and can distinguish four components: thin disc, thick disc, counter-rotating disc, and bulge. The second model uses one more dynamical parameter, was defined in a probabilistic manner, and distinguishes two components: bulge and disc. We demonstrate the improved robustness of these models compared to a widely used method in literature involving cuts on the circularity parameter. The number fraction of disc-dominated galaxies at a given stellar mass obtained by our models agrees well with observations for masses exceeding log10(M*/M⊙) = 10. The galaxies classified as bulge-dominated by the second model are mostly red; however, the population classified as disc-dominated contains significant number of red galaxies alongside the blue population. The contributions of the different galaxy components to the total stellar mass budget exhibits similar trends with stellar mass compared to the observational data, although there is a quantitative disagreement at high and low masses. The Sérsic indices and half-mass radii for the bulge and disc components agree well with those of real galaxies.  more » « less
Award ID(s):
2020295
NSF-PAR ID:
10344393
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
509
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1764 to 1778
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Galaxies exhibit coherent alignments with local structure in the Universe. This effect, called intrinsic alignments (IAs), is an important contributor to the systematic uncertainties for wide-field weak lensing surveys. On cosmological distance scales, intrinsic shape alignments have been observed in red galaxies, which are usually bulge-dominated; while blue galaxies, which are mostly disc-dominated, exhibit shape alignments consistent with a null detection. However, disc-dominated galaxies typically consist of two prominent structures: disc and bulge. Since the bulge component has similar properties as elliptical galaxies and is thought to have formed in a similar fashion, naturally one could ask whether the bulge components exhibit similar alignments as ellipticals? In this paper, we investigate how different components of galaxies exhibit IA in the TNG100-1 cosmological hydrodynamical simulation, as well as the dependence of IA on the fraction of stars in rotation-dominated structures at $z$ = 0. The measurements were controlled for mass differences between the samples. We find that the bulges exhibit significantly higher IA signals, with a non-linear alignment model amplitude of $A_I = 2.98^{+0.36}_{-0.37}$ compared to the amplitude for the galaxies as a whole (both components), $A_I = 1.13^{+0.37}_{-0.35}$. The results for bulges are statistically consistent with those for elliptical galaxies, which have $A_I = 3.47^{+0.57}_{-0.57}$. These results highlight the importance of studying galaxy dynamics in order to understand galaxy alignments and their cosmological implications.

     
    more » « less
  2. ABSTRACT

    We study the alignments of galaxy spin axes with respect to cosmic web filaments as a function of various properties of the galaxies and their constituent bulges and discs. We exploit the SAMI Galaxy Survey to identify 3D spin axes from spatially resolved stellar kinematics and to decompose the galaxy into the kinematic bulge and disc components. The GAMA survey is used to reconstruct the cosmic filaments. The mass of the bulge, defined as the product of stellar mass and bulge-to-total flux ratio Mbulge = M⋆ × (B/T), is the primary parameter of correlation with spin–filament alignments: galaxies with lower bulge masses tend to have their spins parallel to the closest filament, while galaxies with higher bulge masses are more perpendicularly aligned. M⋆ and B/T separately show correlations, but they do not fully unravel spin–filament alignments. Other galaxy properties, such as visual morphology, stellar age, star formation activity, kinematic parameters, and local environment, are secondary tracers. Focussing on S0 galaxies, we find preferentially perpendicular alignments, with the signal dominated by high-mass S0 galaxies. Studying bulge and disc spin–filament alignments separately reveals additional information about the formation pathways of the corresponding galaxies: bulges tend to have more perpendicular alignments, while discs show different tendencies according to their kinematic features and the mass of the associated bulge. The observed correlation between the flipping of spin–filament alignments and the growth of the bulge can be explained by mergers, which drive both alignment flips and bulge formation.

     
    more » « less
  3. ABSTRACT We use comparisons between the Sydney-AAO Multi-object Integral Field Spectrograph (SAMI) Galaxy Survey and equilibrium galaxy models to infer the importance of disc fading in the transition of spirals into lenticular (S0) galaxies. The local S0 population has both higher photometric concentration and lower stellar spin than spiral galaxies of comparable mass and we test whether this separation can be accounted for by passive aging alone. We construct a suite of dynamically self-consistent galaxy models, with a bulge, disc, and halo using the galactics code. The dispersion-dominated bulge is given a uniformly old stellar population, while the disc is given a current star formation rate putting it on the main sequence, followed by sudden instantaneous quenching. We then generate mock observables (r-band images, stellar velocity, and dispersion maps) as a function of time since quenching for a range of bulge/total (B/T) mass ratios. The disc fading leads to a decline in measured spin as the bulge contribution becomes more dominant, and also leads to increased concentration. However, the quantitative changes observed after 5 Gyr of disc fading cannot account for all of the observed difference. We see similar results if we instead subdivide our SAMI Galaxy Survey sample by star formation (relative to the main sequence). We use EAGLE simulations to also take into account progenitor bias, using size evolution to infer quenching time. The EAGLE simulations suggest that the progenitors of current passive galaxies typically have slightly higher spin than present day star-forming disc galaxies of the same mass. As a result, progenitor bias moves the data further from the disc fading model scenario, implying that intrinsic dynamical evolution must be important in the transition from star-forming discs to passive discs. 
    more » « less
  4. ABSTRACT

    We present a detailed study of a galaxy merger taking place at z = 1.89 in the GOODS-S field. Here, we analyse Keck/MOSFIRE spectroscopic observations from the MOSFIRE Deep Evolution Field (MOSDEF) survey along with multiwavelength photometry assembled by the 3D-HST survey. The combined data set is modelled to infer the past star formation histories (SFHs) of both merging galaxies. They are found to be massive, with log10(M*/M⊙) > 11, with a close mass ratio satisfying the typical major-merger definition. Additionally, in the context of delayed-τ models, GOODS-S 43114, and GOODS-S 43683 have similar SFHs and low star formation rates (log10(SFR(SED)/${\rm M}_{\odot }\,\rm {yr}^{-1}$) < 1.0) compared to their past averages. The best-fitting model SEDs show elevated H δA values for both galaxies, indicating that their stellar spectra are dominated by A-type stars, and that star formation peaked ∼0.5−1 Gyr ago and has recently declined. Additionally, based on SED fitting both merging galaxies turned on and shut off star formation within a few hundred Myr of each other, suggesting that their bursts of star formation may be linked. Combining the SFHs and H δA results with recent galaxy merger simulations, we infer that these galaxies have recently completed their first pericentric passage and are moving apart. Finally, the relatively low second velocity moment of GOODS-S 43114, given its stellar mass suggests a disc-like structure. However, including the geometry of the galaxy in the modelling does not completely resolve the discrepancy between the dynamical and stellar masses. Future work is needed to resolve this inconsistency in mass.

     
    more » « less
  5. ABSTRACT

    White dwarf binaries with orbital periods below 1 h will be the most numerous sources for the space-based gravitational wave detector Laser Interferometer Space Antenna (LISA). Based on thousands of individually resolved systems, we will be able to constrain binary evolution and provide a new map of the Milky Way and its close surroundings. In this paper we predict the main properties of populations of different types of detached white dwarf binaries detected by LISA over time. For the first time, we combine a high-resolution cosmological simulation of a Milky Way-mass galaxy (taken from the FIRE project) with a binary population synthesis model for low- and intermediate-mass stars. Our Galaxy model therefore provides a cosmologically realistic star formation and metallicity history for the Galaxy and naturally produces its different components such as the thin and thick disc, the bulge, the stellar halo, and satellite galaxies and streams. Thanks to the simulation, we show how different Galactic components contribute differently to the gravitational wave signal, mostly due to their typical age and distance distributions. We find that the dominant LISA sources will be He–He double white dwarfs (DWDs) and He–CO DWDs with important contributions from the thick disc and bulge. The resulting sky map of the sources is different from previous models, with important consequences for the searches for electromagnetic counterparts and data analysis. We also emphasize that much of the science-enabling information regarding white dwarf binaries, such as the chirp mass and the sky localization, becomes increasingly rich with long observations, including an extended mission up to 8 yr.

     
    more » « less