Ecological restoration seeks to reestablish functioning ecosystems, but planning and evaluation often focus on taxonomic community structure and neglect consumers and their functional roles. The functional trait composition of insect assemblages, which make up the majority of animal diversity in many systems, can reveal how they are affected by restoration management and the consequences for ecosystem function. We sampled ground beetle (Coleoptera: Carabidae) assemblages in restored tallgrass prairies varying in management with prescribed fire and reintroduced American bison (
- Award ID(s):
- 1647502
- NSF-PAR ID:
- 10344425
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 5
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Bison bison ) to describe their taxonomic and functional trait structure. We also measured seed and arthropod predation to relate management, beetle assemblage characteristics, and function, and to test if function is maximized by trait diversity, dominant trait values, or beetle abundance. Beetle assemblages primarily varied with restoration age, declining over time in richness and both taxonomic and functional diversity, but bison presence also influenced taxonomic composition. Prescribed fire reduced seed predation in summer and arthropod predation in fall. Although seed predation was unrelated to beetle assemblages, arthropod predation was greater in sites with higher abundances of carnivorous ground beetles. The relatively weak impacts of fire and bison on functional assemblage structure is a promising sign that these management disturbances, aimed at supporting a diverse native plant community, are not detrimental to beetle assemblages. The significance of reduced predator function following prescribed fire will depend on the restoration context and whether seed or arthropod predation relates to management goals. -
Phylogenetic and functional diversity are relevant for restoration planning, as they influence important ecosystem functions and services. However, it is unknown whether initial phylogenetic and functional diversity of restorations as planned and planted are maintained over time, that is, the extent to which diversity of the restoration planting is reflected in the diversity of the resulting plant community. Furthermore, in the tallgrass prairie, many restorations are planted from seed. Among‐species variation in emergence and establishment affects the transition from seed mixes to realized plant communities in these restorations. We evaluated emergence and early establishment of experimental communities in a biodiversity plot experiment designed to test how phylogenetic and functional diversity influence restoration outcomes. We planted the same experimental communities starting from both seeds and plugs to assess differences in establishment. Our results suggest that phylogenetically and functionally diverse species mixes tend to produce phylogenetically and functionally diverse restored plant communities. After 3 years, experimental communities generally maintained their phylogenetic and functional diversity from seed and plug mixes to established vegetation, despite declines in species richness. While plots planted from seeds had on average 1.3 fewer species than plots planted from plugs, phylogenetic and functional diversity did not significantly differ between the two. Furthermore, most species exhibited no significant differences in percent cover when planted from seeds or plugs. Seeds are generally more cost‐effective for restoration than plugs, and our results indicate these two establishment methods achieved similar biodiversity outcomes.
-
Abstract Restoring ecosystems requires the re-establishment of diverse soil microbial communities that drive critical ecosystem functions. In grasslands, restoration and management require the application of disturbances like fire and grazing. Disturbances can shape microbial taxonomic composition and potentially functional composition as well. We characterized taxonomic and functional gene composition of soil communities using whole genome shotgun metagenomic sequencing to determine how restored soil communities differed from pre-restoration agricultural soils and original remnant soils, how management affects soil microbes, and whether restoration and management affect the number of microbial genes associated with carbohydrate degradation. We found distinct differences in both taxonomic and functional diversity and composition among restored, remnant, and agricultural soils. Remnant soils had low taxonomic and functional richness and diversity, as well as distinct composition, indicating that restoration of agricultural soils does not re-create soil microbial communities that match remnants. Prescribed fire management increased functional diversity, which also was higher in more recently planted restorations. Finally, restored and post-fire soils included high abundances of genes encoding cellulose-degrading enzymes, so restorations and their ongoing management can potentially support functions important in carbon cycling.
-
Recovering biodiversity is a common goal of restoration, yet outcomes for animal communities are highly variable. A major reason for this variability may be that active restoration efforts typically target plant communities, with the assumption that animal communities will passively recover in turn. However, this assumption remains largely unvalidated experimentally making it unclear how plant‐focused restoration strategies influence animal communities. We evaluated how the diversity of seed mixes used to restore tallgrass prairies (a common plant‐focused technique) influenced the recovery of ant community diversity and composition. Our study took place within a large‐scale restoration experiment in southwest Michigan, where 12 former agricultural fields are being restored to tallgrass prairie by sowing seeds of prairie plant species native to our region. Half of each field was seeded with 12 prairie species and the other half with 72 prairie species. Sites restored with high diversity seed mixes increased plant species richness, but did not consistently influence ant richness or community composition. Instead, ant species richness and composition were related to an interaction between realized plant species richness (which was only partly structured by seeding treatments) and environmental structure. Specifically, ant richness increased more with higher realized plant richness when vegetation cover was lower and soil‐surface temperatures were higher. Our findings illustrate how plant and animal communities can respond differently to plant‐focused restoration efforts. Despite this, plant community restoration can structure animal community responses, in concert with environmental factors. Layering additional restoration strategies onto existing plant‐focused approaches may further benefit biodiversity across taxa.
-
1. Ecosystem restoration often focuses on re‐establishing species richness and diversity of native organisms. However, effective restoration requires re‐establishment of ecosystem functions and processes by all trophic levels. Functional trait descriptions of communities, including decomposer communities, may provide more comprehensive evaluations of restoration activities and management than taxonomic community metrics alone.
2. We examined species and functional trait composition of dung beetle (Coleoptera: Scarabaeidae, Geotrupidae) communities across a 3–31 yearchronosequence of restored prairies, in which sites varied in the presence of re‐introduced bison and prescribed fire. We calculated functional diversity metrics and community‐weighted mean trait values using behavioural and morphological measurements. We also performed a dung decomposition experiment to measure an ecosystem function driven by these insects.
3. Bison presence doubled beetle abundance and increased richness by 50%. Shannon diversity increased with restoration age, nearly doubling from the youngest to oldest restorations. Functional diversity was unchanged by site characteristics, except functional richness, which was reduced by bison and fire presence. Beetles were, on average, smaller in older restorations, although this pattern was weaker when bison were present.
4. Dung decomposition was unaffected by site characteristics but increased with community weighted mean beetle mass. Dung decomposition was better predicted by mean trait values, suggesting that supporting large‐bodied species may be more important than species diversity in settings where maximizing decomposition function is a goal.
5. Restoration managers should consider dung beetle communities and their functional characteristics when making management decisions, particularly where large grazers are a component of management strategies.