skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimizing Amazonian dams for nature
Large river systems, particularly those shared by developing nations in the tropics, exemplify the interconnected and thorny challenges of achieving sustainability with respect to food, energy, and water ( 1 ). Numerous countries in South America, Africa, and Asia have committed to hydropower as a means to supply affordable energy with net-zero emissions by 2050 ( 2 ). The placement, size, and number of dams within each river basin network have enormous consequences for not only the ability to produce electricity ( 3 ) but also how they affect people whose livelihoods depend on the local river systems ( 4 ). On page 753 of this issue, Flecker et al. ( 5 ) present a way to assess a rich set of environmental parameters for an optimization analysis to efficiently sort through an enormous number of possible combinations for dam placements and help find the combination(s) that can achieve energy production targets while minimizing environmental costs in the Amazon basin.  more » « less
Award ID(s):
1740042
PAR ID:
10344506
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Science
Volume:
375
Issue:
6582
ISSN:
0036-8075
Page Range / eLocation ID:
714 to 715
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The Mississippi River is a critical waterway in the United States, and hydrologic variability along its course represents a perennial threat to trade, agriculture, industry, the economy, and communities. The Community Earth System Model version 1 (CESM1) complements observational records of river discharge by providing fully coupled output from a state-of-the-art earth system model that includes a river transport model. These simulations of past, historic, and projected river discharge have been widely used to assess the dynamics and causes of changes in the hydrology of the Mississippi River basin. Here, we compare observations and reanalysis datasets of key hydrologic variables to CESM1 output within the Mississippi River basin to evaluate model performance and bias. We show that the seasonality of simulated river discharge in CESM1 is shifted 2–3 months late relative to observations. This offset is attributed to seasonal biases in precipitation and runoff in the region. We also evaluate performance of several CMIP6 models over the Mississippi River basin, and show that runoff in other models — notably CESM2 — more closely simulates the seasonal trends in the reanalysis data. Our results have implications for model selection when assessing hydroclimate variability on the Mississippi River basin, and show that the seasonal timing of runoff can vary widely between models.  Our findings imply that continued improvements in the representation of land surface hydrology in earth system models may improve our ability to assess the causes and consequences of environmental change on terrestrial water resources and major river systems globally. 
    more » « less
  2. Hydropower has been the leading source of renewable energy across the world, accounting for up to 71% of this supply as of 2016. This capacity was built up in North America and Europe between 1920 and 1970 when thousands of dams were built. Big dams stopped being built in developed nations, because the best sites for dams were already developed and environmental and social concerns made the costs unacceptable. Nowadays, more dams are being removed in North America and Europe than are being built. The hydropower industry moved to building dams in the developing world and since the 1970s, began to build even larger hydropower dams along the Mekong River Basin, the Amazon River Basin, and the Congo River Basin. The same problems are being repeated: disrupting river ecology, deforestation, losing aquatic and terrestrial biodiversity, releasing substantial greenhouse gases, displacing thousands of people, and altering people’s livelihoods plus affecting the food systems, water quality, and agriculture near them. This paper studies the proliferation of large dams in developing countries and the importance of incorporating climate change into considerations of whether to build a dam along with some of the governance and compensation challenges. We also examine the overestimation of benefits and underestimation of costs along with changes that are needed to address the legitimate social and environmental concerns of people living in areas where dams are planned. Finally, we propose innovative solutions that can move hydropower toward sustainable practices together with solar, wind, and other renewable sources. 
    more » « less
  3. null (Ed.)
    In Mekong riparian countries, hydropower development provides energy, but also threatens biodiversity, ecosystems, food security, and an unparalleled freshwater fishery. The Sekong, Sesan, and Srepok Rivers (3S Basin) are major tributaries to the Lower Mekong River (LMB), making up 10% of the Mekong watershed but supporting nearly 40% of the fish species of the LMB. Forty-five dams have been built, are under construction, or are planned in the 3S Basin. We completed a meta-analysis of aquatic and riparian environmental losses from current, planned, and proposed hydropower dams in the 3S and LMB using 46 papers and reports from the past three decades. Proposed mainstem Stung Treng and Sambor dams were not included in our analysis because Cambodia recently announced a moratorium on mainstem Mekong River dams. More than 50% of studies evaluated hydrologic change from dam development, 33% quantified sediment alteration, and 30% estimated fish production changes. Freshwater fish diversity, non-fish species, primary production, trophic ecology, and nutrient loading objectives were less commonly studied. We visualized human and environmental tradeoffs of 3S dams from the reviewed papers. Overall, Lower Sesan 2, the proposed Sekong Dam, and planned Lower Srepok 3A and Lower Sesan 3 have considerable environmental impacts. Tradeoff analyses should include environmental objectives by representing organisms, habitats, and ecosystems to quantify environmental costs of dam development and maintain the biodiversity and extraordinary freshwater fishery of the LMB. 
    more » « less
  4. null (Ed.)
    Dam removal is gaining both support and resistance in different communities and political circles in the Pacific Northwest of the United States; given its sensitive environmental and economic consequences. The Columbia River Basin (CRB) offers a unique opportunity to examine to what extent the replacement of hydroelectric dams affects reliability and adequacy of the power system given long-standing proposals to remove the four Lower Snake River dams to improve the survival of the endangered salmon species. Key results show that replacing the four dams leads to an inadequate energy supply necessitating the need for more capacity to satisfy requirements. Although the four dams have higher nameplate capacity, they provide a much lower effective capacity. Thus, the debate about removing dams should be an opportunity for CRB managers to consider investment options in new ecosystem services and energy solutions that maintain adequate performance. 
    more » « less
  5. Homalopsids (Old World Mud Snakes) include 59 semiaquatic species in Asia and Australasia that display an array of morphological adaptations, behaviors, and microhabitat preferences. These attributes make homalopsids an ideal model system for broader questions in evolutionary biology, but the diversity of this understudied group of snakes is still being described. Recognized species diversity in rice paddy snakes (Hypsiscopus) has recently doubled after nearly 200 years of taxonomic stability. However, the evolutionary distinctiveness of some populations remains in question. In this study, we compare mainland Southeast Asian populations of Hypsiscopus east and west of the Red River Basin in Vietnam, a known biogeographic barrier in Asia, using an iterative approach with molecular phylogenetic reconstruction, machine-learning morphological quantitative statistics, and ecological niche modeling. Our analyses show that populations west of the Red River Basin represent an independent evolutionary lineage that is distinct in genetics, morphospace, and habitat suitability, and so warrants species recognition. The holotype of H. wettsteini, a species originally described in error from Costa Rica, grouped morphometrically with the population at the Red River Basin and eastward, and those west of the Red River Basin are referred to the recently described H. murphyi. The two species may have diversified due to a variety of geological and environmental factors, and their recognition exemplifies the importance of multifaceted approaches in taxonomy for downstream biogeographic studies on speciation scenarios.  
    more » « less