skip to main content


Title: AVIDA: Alternating method for Visualizing and Integrating Data
High-dimensional multimodal data arises in many scientific fields. The integration of multimodal data becomes challenging when there is no known correspondence between the samples and the features of different datasets. To tackle this challenge, we introduce AVIDA, a framework for simultaneously performing data alignment and dimension reduction. In the numerical experiments, Gromov-Wasserstein optimal transport and t-distributed stochastic neighbor embedding are used as the alignment and dimension reduction modules respectively. We show that AVIDA correctly aligns high-dimensional datasets without common features with four synthesized datasets and two real multimodal single-cell datasets. Compared to several existing methods, we demonstrate that AVIDA better preserves structures of individual datasets, especially distinct local structures in the joint low-dimensional visualization, while achieving comparable alignment performance. Such a property is important in multimodal single-cell data analysis as some biological processes are uniquely captured by one of the datasets. In general applications, other methods can be used for the alignment and dimension reduction modules.  more » « less
Award ID(s):
2031883
NSF-PAR ID:
10344561
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of computational science
Volume:
68
ISSN:
1877-7503
Page Range / eLocation ID:
101998
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Valencia, Alfonso (Ed.)
    Abstract Motivation Dimension reduction techniques are widely used to interpret high-dimensional biological data. Features learned from these methods are used to discover both technical artifacts and novel biological phenomena. Such feature discovery is critically importent in analysis of large single-cell datasets, where lack of a ground truth limits validation and interpretation. Transfer learning (TL) can be used to relate the features learned from one source dataset to a new target dataset to perform biologically driven validation by evaluating their use in or association with additional sample annotations in that independent target dataset. Results We developed an R/Bioconductor package, projectR, to perform TL for analyses of genomics data via TL of clustering, correlation and factorization methods. We then demonstrate the utility TL for integrated data analysis with an example for spatial single-cell analysis. Availability and implementation projectR is available on Bioconductor and at https://github.com/genesofeve/projectR. Contact gsteinobrien@jhmi.edu or ejfertig@jhmi.edu Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract

    Multimodal single-cell sequencing technologies provide unprecedented information on cellular heterogeneity from multiple layers of genomic readouts. However, joint analysis of two modalities without properly handling the noise often leads to overfitting of one modality by the other and worse clustering results than vanilla single-modality analysis. How to efficiently utilize the extra information from single cell multi-omics to delineate cell states and identify meaningful signal remains as a significant computational challenge. In this work, we propose a deep learning framework, named SAILERX, for efficient, robust, and flexible analysis of multi-modal single-cell data. SAILERX consists of a variational autoencoder with invariant representation learning to correct technical noises from sequencing process, and a multimodal data alignment mechanism to integrate information from different modalities. Instead of performing hard alignment by projecting both modalities to a shared latent space, SAILERX encourages the local structures of two modalities measured by pairwise similarities to be similar. This strategy is more robust against overfitting of noises, which facilitates various downstream analysis such as clustering, imputation, and marker gene detection. Furthermore, the invariant representation learning part enables SAILERX to perform integrative analysis on both multi- and single-modal datasets, making it an applicable and scalable tool for more general scenarios.

     
    more » « less
  3. Abstract

    Single-cell RNA sequencing (scRNA-seq) is a widely used technique for characterizing individual cells and studying gene expression at the single-cell level. Clustering plays a vital role in grouping similar cells together for various downstream analyses. However, the high sparsity and dimensionality of large scRNA-seq data pose challenges to clustering performance. Although several deep learning-based clustering algorithms have been proposed, most existing clustering methods have limitations in capturing the precise distribution types of the data or fully utilizing the relationships between cells, leaving a considerable scope for improving the clustering performance, particularly in detecting rare cell populations from large scRNA-seq data. We introduce DeepScena, a novel single-cell hierarchical clustering tool that fully incorporates nonlinear dimension reduction, negative binomial-based convolutional autoencoder for data fitting, and a self-supervision model for cell similarity enhancement. In comprehensive evaluation using multiple large-scale scRNA-seq datasets, DeepScena consistently outperformed seven popular clustering tools in terms of accuracy. Notably, DeepScena exhibits high proficiency in identifying rare cell populations within large datasets that contain large numbers of clusters. When applied to scRNA-seq data of multiple myeloma cells, DeepScena successfully identified not only previously labeled large cell types but also subpopulations in CD14 monocytes, T cells and natural killer cells, respectively.

     
    more » « less
  4. We consider the semi-supervised dimension reduction problem: given a high dimensional dataset with a small number of labeled data and huge number of unlabeled data, the goal is to find the low-dimensional embedding that yields good classification results. Most of the previous algorithms for this task are linkage-based algorithms. They try to enforce the must-link and cannot-link constraints in dimension reduction, leading to a nearest neighbor classifier in low dimensional space. In this paper, we propose a new hyperplane-based semi-supervised dimension reduction method---the main objective is to learn the low-dimensional features that can both approximate the original data and form a good separating hyperplane. We formulate this as a non-convex optimization problem and propose an efficient algorithm to solve it. The algorithm can scale to problems with millions of features and can easily incorporate non-negative constraints in order to learn interpretable non-negative features. Experiments on real world datasets demonstrate that our hyperplane-based dimension reduction method outperforms state-of-art linkage-based methods when very few labels are available. 
    more » « less
  5. ABSTRACT: Motivation Single-cell RNA sequencing (scRNA-seq) captures whole transcriptome information of individual cells. While scRNA-seq measures thousands of genes, researchers are often interested in only dozens to hundreds of genes for a closer study. Then, a question is how to select those informative genes from scRNA-seq data. Moreover, single-cell targeted gene profiling technologies are gaining popularity for their low costs, high sensitivity and extra (e.g. spatial) information; however, they typically can only measure up to a few hundred genes. Then another challenging question is how to select genes for targeted gene profiling based on existing scRNA-seq data. Results Here, we develop the single-cell Projective Non-negative Matrix Factorization (scPNMF) method to select informative genes from scRNA-seq data in an unsupervised way. Compared with existing gene selection methods, scPNMF has two advantages. First, its selected informative genes can better distinguish cell types. Second, it enables the alignment of new targeted gene profiling data with reference data in a low-dimensional space to facilitate the prediction of cell types in the new data. Technically, scPNMF modifies the PNMF algorithm for gene selection by changing the initialization and adding a basis selection step, which selects informative bases to distinguish cell types. We demonstrate that scPNMF outperforms the state-of-the-art gene selection methods on diverse scRNA-seq datasets. Moreover, we show that scPNMF can guide the design of targeted gene profiling experiments and the cell-type annotation on targeted gene profiling data. Availability and implementation The R package is open-access and available at https://github.com/JSB-UCLA/scPNMF. The data used in this work are available at Zenodo: https://doi.org/10.5281/zenodo.4797997. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less