skip to main content


Title: Vision for a secure Elixir ecosystem: an empirical study of vulnerabilities in Elixir programs
Since its inception in 2011, Elixir has emerged as a popular programming language. Currently, Elixir is used in a diverse set of domains, such as instant messaging, smart farming, and e-commerce. Usage of Elixir in above-mentioned domains necessitates gaining an understanding of the state of vulnerabilities that are reported for Elixir programs. An empirical analysis of vulnerability-related commits, i.e., commits that indicate action taken to mitigate vulnerabilities, can help us understand how frequently vulnerabilities appear in Elixir programs. Such understanding can also be a starting point to integrate secure software development practices into the Elixir ecosystem. We conduct an empirical study where we mine 4,446 commits from 25 open source Elixir repositories from GitHub. Our findings show that (i) 2.0% of the 4,446 commits are vulnerability-related, (ii) 18.0% of the 1,769 Elixir programs in our dataset are modified in vulnerability-related commits, and (iii) the proportion of vulnerability-related commits is highest in 2020. Despite Elixir being perceived as a 'safe' language, our empirical study shows programs written in Elixir to contain vulnerabilities. Based on our findings, we recommend researchers to investigate the root causes of introducing vulnerabilities in Elixir programs.  more » « less
Award ID(s):
2026869 2043324
NSF-PAR ID:
10344630
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2022 ACM Southeast Conference
Page Range / eLocation ID:
215 to 218
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The ubiquitous usage of robots in modern society necessitates secure development of robotics systems. Practitioners who engage in robot development can benefit from a systematic study that investigates the categories of vulnerabilities that appear in robotics systems. The goal of this paper is to help practitioners mitigate vulnerabilities in robotics systems by conducting an empirical study of vulnerabilities in robotics systems. We conduct an empirical study where we analyze 176 robotics-related vulnerabilities collected from the Robot Vulnerability Database (RVD). Our findings show that: (i) robotics-related vulnerabilities can be classified into nine categories; (ii) memory-related vulnerabilities are the most frequent category, (iii) 92.6% of the reported vulnerabilities are software-related, and (iv) software components in robotics systems include more critical vulnerabilities compared to that of hardware components. Based on our findings, we provide a list of development activities that can be used to mitigate vulnerabilities for robotics systems. 
    more » « less
  2. null (Ed.)
    With the advent of the fourth industrial revolution, industry practitioners are moving towards container-based infrastructure for managing their digital workloads. Kubernetes, a container orchestration tool, is reported to help industry practitioners in automated management of cloud infrastructure and rapid deployment of software services. Despite reported benefits, Kubernetes installations are susceptible to security defects, as it occurred for Tesla in 2018. Understanding how frequently security defects appear in Kubernetes installations can help cybersecurity researchers to investigate security-related vulnerabilities for Kubernetes and generate security best practices to avoid them. In this position paper, we first quantify how frequently security defects appear in Kubernetes manifests, i.e., configuration files that are use to install and manage Kubernetes. Next, we lay out a list of future research directions that researchers can pursue.We apply qualitative analysis on 5,193 commits collected from 38 open source repositories and observe that 0.79% of the 5,193 commits are security-related. Based on our findings, we posit that security-related defects are under-reported and advocate for rigorous research that can systematically identify undiscovered security defects that exist in Kubernetes manifests. We predict that the increasing use of Kubernetes with unresolved security defects can lead to large-scale security breaches. 
    more » « less
  3. Robert Feldt and Thomas Zimmermann (Ed.)
    Julia has emerged as a popular programming language to develop scientific software, in part due to its flexible syntax akin to scripting languages while retaining the execution speed of a compiled language. Similar to any programming language, Julia programs are susceptible to defects. However, a systematic characterization of defects in Julia programs remains under-explored. A systematic analysis of defects in Julia programs will act as a starting point for researchers and toolsmiths in building developer tools to improve the quality of Julia programs. To this end, we conduct an empirical study with 742 defects that appear in Julia programs by mining 30,494 commits and 3,038 issue reports collected from 112 open-source Julia projects. From our empirical analysis, we identify 9 defect categories and 7 defect symptoms. We observe certain defect categories to be Julia-specific, e.g., type instability and world age defects. We also survey 52 developers to rank the identified categories based on perceived severity. Based on our empirical analysis, we provide specific recommendations for researchers and toolsmiths. 
    more » « less
  4. Nowadays, cyberattack incidents are happening on a daily basis. As a result, the demand for a larger and more challenging workforce is increasing. To handle this demand, academic institutions offer cybersecurity courses and degree programs into their curricula; however, more efforts are needed to address the high demand of the cybersecurity workforce. This work aims to bridge the gap between workforce shortage and the number of qualified graduates to fill the positions. We approach this by introducing cybersecurity concepts at the early stage of undergraduate curricula of computer science and engineering programs. Secure programming is critical as many cybersecurity incidents happen due to software vulnerabilities. However, most UG-level programming courses pay little attention to secure programming practices. As a result, many students graduate with limited knowledge of security vulnerabilities that might plague the developed software. Our goal in this work is to introduce secure programming at introductory level programming courses so that students should be aware of cybersecurity issues and use this security mindset in advanced level courses and projects in their degree programs. To accomplish this goal, we developed intuitive and interactive modules emphasizing secure programming in C++ and Java courses to help students become secure software developers. These modules will be used alongside the coursework to emphasize certain vulnerabilities within the programming environment of a specific language and allow students to learn cybersecurity topics, enforcing a solid foundation and understanding. We developed cybersecurity educational modules for C++ and Java as they are amongst the popular languages and used in introductory programming courses. While designing these modules, we kept in mind that the topics must be relevant to real-world issues in the software industry. We used a variety of resources and benchmarks to ensure the authenticity of our chosen topics, including Common Weakness Enumeration (CWE) and Common Vulnerability and Exposures (CVE). While choosing module topics to develop, we had some restrictions. For example, the topics must be introductory and easy to understand. These modules are geared towards freshman or sophomore-level UG students who have just started programming. The developed security modules have four components: power-point slides, lab description, code template for the lab, and complete solution. The complete solution for each module will be provided to the instructors to check students’ work if they adopt the modules in their courses. The modules developed for a C++ programming course include labs on input validation, integer overflow, random number generation, function call with incorrect argument type, and dangling pointers. In Java, we developed lab modules for input validation, integer overflow, null object reference, random number generator, and data encapsulation. 
    more » « less
  5. Recently, bug-bounty programs have gained popularity and become a significant part of the security culture of many organizations. Bug-bounty programs enable organizations to enhance their security posture by harnessing the diverse expertise of crowds of external security experts (i.e., bug hunters). Nonetheless, quantifying the benefits of bug-bounty programs remains elusive, which presents a significant challenge for managing them. Previous studies focused on measuring their benefits in terms of the number of vulnerabilities reported or based on the properties of the reported vulnerabilities, such as severity or exploitability. However, beyond these inherent properties, the value of a report also depends on the probability that the vulnerability would be discovered by a threat actor before an internal expert could discover and patch it. In this paper, we present a data-driven study of the Chromium and Firefox vulnerability-reward programs. First, we estimate the difficulty of discovering a vulnerability using the probability of rediscovery as a novel metric. Our findings show that vulnerability discovery and patching provide clear benefits by making it difficult for threat actors to find vulnerabilities; however, we also identify opportunities for improvement, such as incentivizing bug hunters to focus more on development releases. Second, we compare the types of vulnerabilities that are discovered internally vs. externally and those that are exploited by threat actors. We observe significant differences between vulnerabilities found by external bug hunters, internal security teams, and external threat actors, which indicates that bug-bounty programs provide an important benefit by complementing the expertise of internal teams, but also that external hunters should be incentivized more to focus on the types of vulnerabilities that are likely to be exploited by threat actors. 
    more » « less