skip to main content

This content will become publicly available on December 2, 2022

Title: Evolutionary patterns of scale morphology in damselfishes (Pomacentridae)
Abstract Fish scales are bony plates embedded in the skin that vary extensively in shape across taxa. Despite a plethora of hypotheses regarding form–function relationships in scales, we know little about the ecological selective factors that shape their diversity. Here we examine evolutionary patterns of scale morphology using novel three-dimensional topography from the surfaces of 59 species of damselfishes, a prominent radiation of coral reef fishes. We find evidence that scale morphology changes with different flow environments, such that species that spend more time in open-water habitats have smoother scales. We also show that other aspects of ecology lead to highly derived scales. For example, anemonefishes show an evolutionary transition to smaller scales and smaller ctenii (scale spines). Moreover, changes in body shape, which may reflect ecological differentiation, are related to scale shape but not surface properties. We also demonstrate weak evolutionary integration among multiple aspects of scale morphology; however, scale size and shape are related, and scale morphology is correlated between different body regions. Finally, we also identify a relationship between aspects of lateral line pore morphology, such that the number of lateral line pores per scale and the size of those pores are inversely related. Overall, our study more » provides insights into the multidimensionality of scale evolution and improves our understanding of some of the factors that can give rise to the diversity of scales seen across fishes. « less
Authors:
; ;
Award ID(s):
1907156
Publication Date:
NSF-PAR ID:
10344683
Journal Name:
Biological Journal of the Linnean Society
Volume:
135
Issue:
1
Page Range or eLocation-ID:
138 to 158
ISSN:
0024-4066
Sponsoring Org:
National Science Foundation
More Like this
  1. Although rare within the context of 30 000 species of extant fishes, scale-feeding as an ecological strategy has evolved repeatedly across the teleost tree of life. Scalefeeding (lepidophagous) fishes are diverse in terms of their ecology, behaviour, and specialized morphologies for grazing on scales and mucus of sympatric species. Despite this diversity, the underlying ontogenetic changes in functional and biomechanical properties of associated feeding morphologies in lepidophagous fishes are less understood. We examined the ontogeny of feeding mechanics in two evolutionary lineages of scale-feeding fishes: Roeboides, a characin, and Catoprion, a piranha. We compare these two scale-feeding taxa with their nearest, non-lepidophagous taxa to identify traits held in common among scale-feeding fishes. We use a combination of micro-computed tomography scanning and iodine staining to measure biomechanical predictors of feeding behaviour such as tooth shape, jaw lever mechanics and jaw musculature. We recover a stark contrast between the feeding morphology of scale-feeding and non-scale-feeding taxa, with lepidophagous fishes displaying some paedomorphic characters through to adulthood. Few traits are shared between lepidophagous characins and piranhas, except for their highly-modified, stout dentition. Given such variability in development, morphology and behaviour, ecological diversity within lepidophagous fishes has been underestimated.
  2. Repeatable, convergent outcomes are prima facie evidence for determinism in evolutionary processes. Among fishes, well-known examples include microevolutionary habitat transitions into the water column, where freshwater populations (e.g., sticklebacks, cichlids, and whitefishes) recurrently diverge toward slender-bodied pelagic forms and deep-bodied benthic forms. However, the consequences of such processes at deeper macroevolutionary scales in the marine environment are less clear. We applied a phylogenomics-based integrative, comparative approach to test hypotheses about the scope and strength of convergence in a marine fish clade with a worldwide distribution (snappers and fusiliers, family Lutjanidae) featuring multiple water-column transitions over the past 45 million years. We collected genome-wide exon data for 110 (∼80%) species in the group and aggregated data layers for body shape, habitat occupancy, geographic distribution, and paleontological and geological information. We also implemented approaches using genomic subsets to account for phylogenetic uncertainty in comparative analyses. Our results show independent incursions into the water column by ancestral benthic lineages in all major oceanic basins. These evolutionary transitions are persistently associated with convergent phenotypes, where deep-bodied benthic forms with truncate caudal fins repeatedly evolve into slender midwater species with furcate caudal fins. Lineage diversification and transition dynamics vary asymmetrically between habitats, with benthic lineagesmore »diversifying faster and colonizing midwater habitats more often than the reverse. Convergent ecological and functional phenotypes along the benthic–pelagic axis are pervasive among different lineages and across vastly different evolutionary scales, achieving predictable high-fitness solutions for similar environmental challenges, ultimately demonstrating strong determinism in fish body-shape evolution.

    « less
  3. Abstract Coral reef fishes constitute one of the most diverse assemblages of vertebrates on the planet. Color patterns are known to serve a number of functions including intra- and inter-specific signaling, camouflage, mimicry, and defense. However, the relative importance of these and other factors in shaping color pattern evolution is poorly understood. Here we conduct a comparative phylogenetic analysis of color pattern evolution in the butterflyfishes (Chaetodontidae). Using recently developed tools for quantifying color pattern geometry as well as machine learning approaches, we investigate the tempo of evolution of color pattern elements and test whether ecological variables relating to defense, depth, and social behavior predict color pattern evolution. Butterflyfishes exhibit high diversity in measures of chromatic conspicuousness and the degrees of fine versus gross scale color patterning. Surprisingly, most diversity in color pattern was not predicted by any of the measures of ecology in our study, although we did find a significant but weak relationship between the level of fine scale patterning and some aspects of defensive morphology. We find that the tempo of color pattern diversification in butterflyfishes has increased toward the present and suggest that rapid evolution, presumably in response to evolutionary pressures surrounding speciation and lineage divergence,more »has effectively decoupled color pattern geometry from some aspects of ecology. Machine learning classification of color pattern appears to rely on a set of features that are weakly correlated with current color pattern geometry descriptors, but that may be better suited for the detection of discrete components of color pattern. A key challenge for future studies lies in determining whether rapid evolution has generally decoupled color patterns from ecology, or whether convergence in function produces convergence in color pattern at phylogenetic scales.« less
  4. The drivers of latitudinal differences in the phylogenetic and ecological composition of communities are increasingly studied and understood, but still little is known about the factors underlying morphological differences. High-resolution, three-dimensional morphological data collected using computerized micro-tomography (micro-CT) allows comprehensive comparisons of morphological diversity across latitude. Using marine bivalves as a model system, this study combines 3D shape analysis (based on a new semi-automated procedure for placing landmarks and semilandmarks on shell surfaces) with non-shape traits: centroid size, proportion of shell to soft-tissue volume, and magnitude of shell ornamentation. Analyses conducted on the morphology of 95% of all marine bivalve species from two faunas along the Atlantic coast of North America, the tropical Florida Keys and the boreal Gulf of Maine, show that morphological shifts between these two faunas, and in phylogenetic and ecological subgroups shared between them, occur as changes in total variance with a bounded minimum rather than directional shifts. The dispersion of species in shellshape morphospace is greater in the Gulf of Maine, which also shows a lower variance in ornamentation and size than the Florida Keys, but the faunas do not differ significantly in the ratio of shell to internal volume. Thus, regional differences conform tomore »hypothesized effects of resource seasonality and predation intensity, but not to carbonate saturation or calcification costs. The overall morphological differences between the regional faunas is largely driven by the loss of ecological functional groups and family-level clades at high latitudes, rather than directional shifts in morphology within the shared groups with latitude. Latitudinal differences in morphology thus represent a complex integration of phylogenetic and ecological factors that are best captured in multivariate analyses across several hierarchical levels.« less
  5. Muñoz, Martha (Ed.)
    Abstract Selective pressures favor morphologies that are adapted to distinct ecologies, resulting in trait partitioning among ecomorphotypes. However, the effects of these selective pressures vary across taxa, especially because morphology is also influenced by factors such as phylogeny, body size, and functional trade-offs. In this study, we examine how these factors impact functional diversification in mammals. It has been proposed that trait partitioning among mammalian ecomorphotypes is less pronounced at small body sizes due to biomechanical, energetic, and environmental factors that favor a “generalist” body plan, whereas larger taxa exhibit more substantial functional adaptations. We title this the Divergence Hypothesis (DH) because it predicts greater morphological divergence among ecomorphotypes at larger body sizes. We test DH by using phylogenetic comparative methods to examine the postcranial skeletons of 129 species of taxonomically diverse, small-to-medium-sized (<15 kg) mammals, which we categorize as either “tree-dwellers” or “ground-dwellers.” In some analyses, the morphologies of ground-dwellers and tree-dwellers suggest greater between-group differentiation at larger sizes, providing some evidence for DH. However, this trend is neither particularly strong nor supported by all analyses. Instead, a more pronounced pattern emerges that is distinct from the predictions of DH: within-group phenotypic disparity increases with body size in both ground-dwellersmore »and tree-dwellers, driven by morphological outliers among “medium”-sized mammals. Thus, evolutionary increases in body size are more closely linked to increases in within-locomotor-group disparity than to increases in between-group disparity. We discuss biomechanical and ecological factors that may drive these evolutionary patterns, and we emphasize the significant evolutionary influences of ecology and body size on phenotypic diversity.« less