skip to main content

Title: Differentiable Spline Approximations
The paradigm of differentiable programming has significantly enhanced the scope of machine learning via the judicious use of gradient-based optimization. However, standard differentiable programming methods (such as autodiff) typically require that the machine learning models be differentiable, limiting their applicability. Our goal in this paper is to use a new, principled approach to extend gradient-based optimization to functions well modeled by splines, which encompass a large family of piecewise polynomial models. We derive the form of the (weak) Jacobian of such functions and show that it exhibits a block-sparse structure that can be computed implicitly and efficiently. Overall, we show that leveraging this redesigned Jacobian in the form of a differentiable" layer''in predictive models leads to improved performance in diverse applications such as image segmentation, 3D point cloud reconstruction, and finite element analysis. We also open-source the code at\url {https://github. com/idealab-isu/DSA}.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many probabilistic modeling problems in machine learning use gradient-based optimization in which the objective takes the form of an expectation. These problems can be challenging when the parameters to be optimized determine the probability distribution under which the expectation is being taken, as the na\"ive Monte Carlo procedure is not differentiable. Reparameterization gradients make it possible to efficiently perform optimization of these Monte Carlo objectives by transforming the expectation to be differentiable, but the approach is typically limited to distributions with simple forms and tractable normalization constants. Here we describe how to differentiate samples from slice sampling to compute \textit{slice sampling reparameterization gradients}, enabling a richer class of Monte Carlo objective functions to be optimized. Slice sampling is a Markov chain Monte Carlo algorithm for simulating samples from probability distributions; it only requires a density function that can be evaluated point-wise up to a normalization constant, making it applicable to a variety of inference problems and unnormalized models. Our approach is based on the observation that when the slice endpoints are known, the sampling path is a deterministic and differentiable function of the pseudo-random variables, since the algorithm is rejection-free. We evaluate the method on synthetic examples and apply it to a variety of applications with reparameterization of unnormalized probability distributions. 
    more » « less
  2. Abstract

    We have developed a differentiable programming framework for truncated hierarchical B-splines (THB-splines), which can be used for several applications in geometry modeling, such as surface fitting and deformable image registration, and can be easily integrated with geometric deep learning frameworks. Differentiable programming is a novel paradigm that enables an algorithm to be differentiated via automatic differentiation, i.e., using automatic differentiation to compute the derivatives of its outputs with respect to its inputs or parameters. Differentiable programming has been used extensively in machine learning for obtaining gradients required in optimization algorithms such as stochastic gradient descent (SGD). While incorporating differentiable programming with traditional functions is straightforward, it is challenging when the functions are complex, such as splines. In this work, we extend the differentiable programming paradigm to THB-splines. THB-splines offer an efficient approach for complex surface fitting by utilizing a hierarchical tensor structure of B-splines, enabling local adaptive refinement. However, this approach brings challenges, such as a larger computational overhead and the non-trivial implementation of automatic differentiation and parallel evaluation algorithms. We use custom kernel functions for GPU acceleration in forward and backward evaluation that are necessary for differentiable programming of THB-splines. Our approach not only improves computational efficiency but also significantly enhances the speed of surface evaluation compared to previous methods. Our differentiable THB-splines framework facilitates faster and more accurate surface modeling with local refinement, with several applications in CAD and isogeometric analysis.

    more » « less
  3. Sparse learning models are popular in many application areas. Objective functions in sparse learning models are usually non-smooth, which makes it difficult to solve them numerically. We develop a fast and convergent two-step iteration scheme for solving a class of non-differentiable optimization models motivated from sparse learning. To overcome the difficulty of the non-differentiability of the models, we first present characterizations of their solutions as fixed-points of mappings involving the proximity operators of the functions appearing in the objective functions. We then introduce a two-step fixed-point algorithm to compute the solutions. We establish convergence results of the proposed two-step iteration scheme and compare it with the alternating direction method of multipliers (ADMM). In particular, we derive specific two-step iteration algorithms for three models in machine learning: l1-SVM classification, l1-SVM regression, and the SVM classification with the group LASSO regularizer. Numerical experiments with some synthetic datasets and some benchmark datasets show that the proposed algorithm outperforms ADMM and the linear programming method in computational time and memory storage costs. 
    more » « less
  4. Predicting and understanding how people make decisions has been a long-standing goal in many fields, with quantitative models of human decision-making informing research in both the social sciences and engineering. We show how progress toward this goal can be accelerated by using large datasets to power machine-learning algorithms that are constrained to produce interpretable psychological theories. Conducting the largest experiment on risky choice to date and analyzing the results using gradient-based optimization of differentiable decision theories implemented through artificial neural networks, we were able to recapitulate historical discoveries, establish that there is room to improve on existing theories, and discover a new, more accurate model of human decision-making in a form that preserves the insights from centuries of research.

    more » « less
  5. Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in machine learning. Automatic differentiation (AD), also called algorithmic differentiation or simply ``autodiff'', is a family of techniques similar to but more general than backpropagation for efficiently and accurately evaluating derivatives of numeric functions expressed as computer programs. AD is a small but established field with applications in areas including computational fluid dynamics, atmospheric sciences, and engineering design optimization. Until very recently, the fields of machine learning and AD have largely been unaware of each other and, in some cases, have independently discovered each other's results. Despite its relevance, general-purpose AD has been missing from the machine learning toolbox, a situation slowly changing with its ongoing adoption under the names ``dynamic computational graphs'' and ``differentiable programming''. We survey the intersection of AD and machine learning, cover applications where AD has direct relevance, and address the main implementation techniques. By precisely defining the main differentiation techniques and their interrelationships, we aim to bring clarity to the usage of the terms ``autodiff'', ``automatic differentiation'', and ``symbolic differentiation'' as these are encountered more and more in machine learning settings. 
    more » « less