skip to main content


Title: The gut bacterial microbiome of the Threeridge mussel, Amblema plicata , varies between rivers but shows a consistent core community
Abstract

Freshwater mussels are important for nutrient cycling and ecosystem health as they filter feed on their surrounding water. This filter feeding makes these bivalves especially sensitive to conditions in their environment. Gut microbial communities (microbiomes) have been recognised as important to both host organism and ecosystem health; however, how freshwater mussel microbiomes are organised and influenced is unclear.

In this study, the gut bacterial microbiome of Threeridge mussel,Amblema plicata, was compared across two river basins, five rivers, and nine local sites in the south‐eastern U.S.A. Mussel gut tissue was dissected, DNA extracted, and the microbiome characterised by high throughput sequencing of the V4 region of the 16S ribosomal RNA gene.

Planctomycetes, Firmicutes, and Cyanobacteria were the most common bacterial phyla within the guts of all sampledA.plicata. However, the relative abundances of these major bacterial phyla differed between mussels sampled from different rivers and river basins, as did the relative abundance of specific bacterial operational taxonomic units (OTUs). Despite these differences, a core microbiome was identified across all mussels, with eight OTUs being consistent members of theA.plicatamicrobiome at all sites, the most abundant OTU identifying as a member of the family Planctomycetaceae. Geographic distance between sites was not correlated with similarity in the structure of the gut microbiome, which was more related to site physicochemistry.

Overall, these results suggest that while physicochemical conditions affect the composition of transient bacteria in the Threeridge mussel gut microbiome, the core microbiome is largely unaffected, and a portion of theA.plicatamicrobiome is retained regardless of the river system.

How long transient bacteria remain in the gut, and to what extent these transient microbes aid in host function is still unknown. Core microbiota have been found to aid in multiple functions within animal hosts, and within freshwater mussels this core microbiome may aid in nutrient processing and cycling. Therefore, it is important to look at both transient and core microbes when studying the structure of freshwater invertebrate microbiomes.

 
more » « less
Award ID(s):
1831512 1831531
NSF-PAR ID:
10445955
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Freshwater Biology
Volume:
67
Issue:
7
ISSN:
0046-5070
Page Range / eLocation ID:
p. 1125-1136
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Biogeochemical cycling has often been characterized by physical and microbial processes, yet animals can be essential mediators of energy and nutrients in ecosystems. Excretion by aggregated animals can be an important local source of inorganic nutrients in green food webs; however, whether animals are a source of dissolved energy that can support brown food webs is understudied.

    We tested whether animal aggregations are a substantial flux of bioavailable dissolved organic matter (DOM) by studying spatially stable, biogeochemical hotspots formed by filter‐feeding freshwater mussels. We used parallel‐factor analysis to quantify DOM fluorescent components composition of mussel excretion and expected digestive breakdown of particulate food sources would lead to excretion of labile DOM. Next, we combined measured excretion rates of DOM, ammonium (, N) and phosphorous (SRP; P) for 22 species with biomass estimates for 14 aggregations to quantify contributions of DOM, N and P to local availability. Because mussels occupy distinct stoichiometric niches, we anticipated that differences in species biomass and assemblage structure would elicit different flux and stoichiometries of aggregate excretion.

    Aggregate dissolved organic carbon (DOC) excretion was minor (1%–11%) compared to N (12%–2,860%) and P (1%–97%), yet generalities across assemblages emerged regarding organic matter transformation by mussels towards labile protein‐like compounds compared to abundant aromatic, humic compounds in ambient water.

    Aggregate excretion of labile DOM was a substantial pool of bioavailable energy, contributing 2%–114% of local labile DOM. Spatial differences in assemblage structure led to strong differences in aggregate flux and stoichiometry driven by biomass and stoichiometric trait expression of species with contrasting dominance patterns.

    Under the nutrient conditions of our study (high C:nutrient), biogeochemical hotspots associated with low‐trophic position animal biomass may indirectly control energy flow to the brown food web by shifting C:nutrient stoichiometry available to microbes or directly by increasing the flux of microbially available DOM. Collectively, our results highlight a potentially substantial flux of labile energy and nutrients to microbial communities through the transformation of ingested organic matter by aggregations of animals and emphasize that shared functional trait classification may not translate into shared ecological function.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  2. null (Ed.)
    Freshwater mussels perform essential ecosystem functions, yet we have no information on how their microbiomes fluctuate over time. In this study, we examined temporal variation in the microbiome of six mussel species (Lampsilis ornata, Obovaria unicolor, Elliptio arca, Fusconaia cerina, Cyclonaias asperata, and Tritogonia verrucosa) sampled from the same river in 2016 and 2019. We examined the taxonomic, phylogenetic, and inferred functional (from 16S rRNA sequences) facets of their microbiome diversity. Significant differences between the two years were identified in five of the six species sampled. However, not all species that exhibited a temporally variable microbiome were functionally distinct across years, indicating functional redundancy within the mussel gut microbiome. Inferred biosynthesis pathways showed temporal variation in pathways involved in degradation, while pathways involved in cellular metabolism were stable. There was no evidence for phylosymbiosis across any facet of microbiome biodiversity. These results indicate that temporal variation is an important factor in the assembly of the gut microbiomes of freshwater mussels and provides further support that the mussel gut microbiome is involved in host development and activity. 
    more » « less
  3. Abstract

    Extreme hydro‐meteorological events such as droughts are becoming more frequent, intense, and persistent. This is particularly true in the south centralUSA, where rapidly growing urban areas are running out of water and human‐engineered water storage and management are leading to broad‐scale changes in flow regimes. The Kiamichi River in southeastern Oklahoma,USA, has high fish and freshwater mussel biodiversity. However, water from this rural river is desired by multiple urban areas and other entities. Freshwater mussels are large, long‐lived filter feeders that provide important ecosystem services. We ask how observed changes in mussel biomass and community composition resulting from drought‐induced changes in flow regimes might lead to changes in river ecosystem services. We sampled mussel communities in this river over a 20‐year period that included two severe droughts. We then used laboratory‐derived physiological rates and river‐wide estimates of species‐specific mussel biomass to estimate three aggregate ecosystem services provided by mussels over this time period: biofiltration, nutrient recycling (nitrogen and phosphorus), and nutrient storage (nitrogen, phosphorus, and carbon). Mussel populations declined over 60%, and declines were directly linked to drought‐induced changes in flow regimes. All ecosystem services declined over time and mirrored biomass losses. Mussel declines were exacerbated by human water management, which has increased the magnitude and frequency of hydrologic drought in downstream reaches of the river. Freshwater mussels are globally imperiled and declining around the world. Summed across multiple streams and rivers, mussel losses similar to those we document here could have considerable consequences for downstream water quality although lost biofiltration and nutrient retention. While we cannot control the frequency and severity of climatological droughts, water releases from reservoirs could be used to augment stream flows and prevent compounded anthropogenic stressors.

     
    more » « less
  4. Abstract

    Milk is inhabited by a community of bacteria and is one of the first postnatal sources of microbial exposure for mammalian young. Bacteria in breast milk may enhance immune development, improve intestinal health, and stimulate the gut‐brain axis for infants. Variation in milk microbiome structure (e.g., operational taxonomic unit [OTU] diversity, community composition) may lead to different infant developmental outcomes. Milk microbiome structure may depend on evolutionary processes acting at the host species level and ecological processes occurring over lactation time, among others. We quantified milk microbiomes using 16S rRNA high‐throughput sequencing for nine primate species and for six primate mothers sampled over lactation. Our data set included humans (Homo sapiens, Philippines and USA) and eight nonhuman primate species living in captivity (bonobo [Pan paniscus], chimpanzee [Pan troglodytes], western lowland gorilla [Gorilla gorilla gorilla], Bornean orangutan [Pongo pygmaeus], Sumatran orangutan [Pongo abelii], rhesus macaque [Macaca mulatta], owl monkey [Aotus nancymaae]) and in the wild (mantled howler monkey [Alouatta palliata]). For a subset of the data, we paired microbiome data with nutrient and hormone assay results to quantify the effect of milk chemistry on milk microbiomes. We detected a core primate milk microbiome of seven bacterial OTUs indicating a robust relationship between these bacteria and primate species. Milk microbiomes differed among primate species with rhesus macaques, humans and mantled howler monkeys having notably distinct milk microbiomes. Gross energy in milk from protein and fat explained some of the variations in microbiome composition among species. Microbiome composition changed in a predictable manner for three primate mothers over lactation time, suggesting that different bacterial communities may be selected for as the infant ages. Our results contribute to understanding ecological and evolutionary relationships between bacteria and primate hosts, which can have applied benefits for humans and endangered primates in our care.

     
    more » « less
  5. Abstract

    In streams, unionoid mussels and fish form aggregations that exert bottom‐up and top‐down effects on food webs, but the magnitude and spatial extent of their effects are controlled by species traits. Sedentary mussels live burrowed in the sediment in patchily distributed dense aggregations (mussel beds) where they filter seston and provide a local, relatively constant nutrient subsidy. In contrast, fish move on and off mussel beds, and thus comprise a transient nutrient subsidy.

    We asked how overlap between fish and mussels influences nutrient recycling and resource distribution in streams. We conducted an 8‐week study in experimental streams where we created mussel beds (comprised of two species,Actinonaias ligamentinaandAmblema plicata), manipulated the occurrence of a grazing minnow (Campostoma anomalum), and tracked nutrient (nitrogen and phosphorus) and resource (algae, detritus, and chironomids) abundance up and downstream of the mussel beds.

    In general, neither consumer had strong effects on the concentration or spatial distribution of nutrients. Water turnover time in our experimental streams may have diluted fish and mussel nutrient excretion effects, making it difficult to detect spatial patterns during a given sampling period.

    Fish controlled the abundance and productivity of algae. In treatments without fish, large mats of filamentous algae formed early in the experiment. These algae senesced, decomposed, and were not replaced. When fish were present, algae consisted of attached biofilms with consistent biomass and spatial distribution over time.

    Although previous work has shown that mussels can have strong, seasonal bottom‐up effects on both primary and secondary production, our results suggested that adding grazing mobile fishes, led to a more consistent and homogenous supply of algal resources. Because mussels rarely occur in the absence of fish, considering their combined influence on ecosystem dynamics is likely to be important.

     
    more » « less