skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Miocene-Pliocene Volcanism in the Sierra San Francisco, Central Baja California Peninsula, Mexico
Volcanic rocks of the Sierra San Francisco (SSF), in northern Baja California Sur, Mexico, record post-subduction magmatism related to slab melting and slab window opening. The range is composed of andesitic and dacitic domes, mafic lavas, and volcaniclastic deposits (debris and block-and-ash-flow, lahar, and fluvial) that constitute the proximal to distal facies of a volcanic field with local eruptive ages that postdate the regional transition from subduction to transtension. Lowest observed volcanic units consist of interbedded and hydrothermally altered mafic lavas, tuff breccias, and andesite/dacite domes. These are overlain by volcaniclastic units and dacite domes that erupted between ~11-10 Ma. Volcaniclastic deposits comprise a section up to 800 m thick, locally flank and dip radially away from domes, and are likely associated with dome collapse. These deposits are unconformably overlain by a series of ~5.5-4.5 Ma Mg-enriched basaltic andesites (bajaites) that typically erupted along NNW-trending normal faults. Low interbedded mafic lavas are chemically similar to syn-subduction lavas (>15 Ma) SE of the SSF, suggesting a typical subduction supraslab mantle source during waning, late Miocene Farallon plate subduction. ~11-10 Ma dacite domes and debris flow blocks display an adakitic geochemical signature, implying an origin involving late Miocene foundering and melting of the edges of the subducted Farallon plate during the opening of a slab window after the 12.3 Ma transition from subduction to transtension. Adakitic rocks of the SSF and the Santa Clara volcanic field 60 km to the SW may constrain the E-W extent of the slab window. The ~5.5-4.5 Ma bajaites display enriched REE and trace element patterns, potentially resulting from the rise of enriched subslab mantle through the slab window and interaction with supraslab mantle, previously metasomatized by slab melts. Thermal pulses associated with Gulf of California rifting may have provided the heat to generate Mg-rich magmas which ascended along rift-related faults, precluding significant crustal contamination or fractionation, and allowing magmas to retain their primitive character. Further analysis will elucidate the timing of slab window development and the post-subduction mantle processes that drove the chemical evolution of SSF magmas.  more » « less
Award ID(s):
1925565
PAR ID:
10344892
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
GSA Cordilleran 2022 Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Sierra San Francisco (SSF) is a Neogene volcanic range along the topographic crest of the Baja California peninsula in northern Baja California Sur, Mexico. The SSF is ~55 km long (NW-SE) and ~30 km wide and its highest peaks exceed 1500 m elevation. The SSF has a long history of volcanism and has been eroded by deep, rugged, radially-draining canyons. The development of SSF topography is intimately associated with the volcanic evolution of the range. The SSF is a large and complex dacitic adakite dome complex largely built of a thick, up to 800 m, stratigraphic succession of dacitic tuff breccias with minor interbedded basaltic andesite lavas. These deposits overlie rare exposures of aeolian sandstone of unknown age. The tuff breccias represent block-and-ash-flows and lahars generated from steep-sided peleean dacite and andesite domes, with three radiometric dates of 11-10 Ma. This intermediate sequence is unconformably capped by widespread bajaite mafic lavas, 5.5-4.5 Ma. SSF topography evolved dramatically since the late Miocene: 1) From 11-10 Ma, adakite domes erupted across the central SSF, locally along NNW faults. Thick sequences of bedded tuff breccias accumulated around the domes and are radially inclined away from source domes. The duration of this volcanism is unknown. 2) From 10-5 Ma, deep erosion of the pyroclastic strata formed a range-wide radial drainage network, with channel depths of up to 130 m or more. 3) From 5.5-4.5 Ma, voluminous bajaite lavas from cinder cones and dike vents flooded the top of the range and flowed down the radial drainages with flow distances up to 12 km. Vents are strongly aligned along steep NNW normal faults. 4) After 4.5 Ma, erosion removed interfluves of tuff breccia not armored by younger mafic lavas. Today, the long, steep-sided, lava-capped ridges are inverted topographically. At Santa Martha, an area in the central SSF with the highest concentration of domes, hydrothermal alteration of the volcanic deposits during and after the dome volcanism caused severe material weakening and slope failure within the volcanic center. The area is now a distinctive erosional basin, partly filled with clay-rich landslide deposits. Comparable volcanic history and topographic development are likely to have occurred in a dome field of similar age and size at Santa Agueda, 60 km SE of Santa Martha. 
    more » « less
  2. Abstract Combined Hf-O isotopic analyses of zircons from tuffs and lavas within the Sierra Madre Occidental (SMO) silicic large igneous province are probes of petrogenetic processes in the lower and upper crust. Existing petrogenetic and tectonomagmatic models diverge, having either emphasized significant crustal reworking of hydrated continental lithosphere in an arc above the retreating Farallon slab or significant input of juvenile mantle melts through a slab window into an actively stretching continental lithosphere. New isotopic data are remarkably uniform within and between erupted units across the spatial and temporal extent of the SMO, consistent with homogeneous melt production and evolution. Isotopic values are consistent with enriched mantle magmas (80%) that assimilated Proterozoic paragneisses (~20%) from the lower crust. δ18Ozircon values are consistent with fractionation of mafic magma and not with assimilation of hydrothermally altered upper crust, suggesting that the silicic magmas evolved at depth. Isotopic data agree with previous interpretations where voluminous juvenile melts entered the lithosphere during the transition from a continental arc experiencing slab rollback (Late Eocene) to the arrival of a subducting slab window (Oligocene and Early Miocene) and failure of the upper plate leading to the opening of the Gulf of California (Late Miocene). An anomalously large heat flux and extension of the upper plate allow for the sustained fractionation of the voluminous SMO magmas and assimilation of the lower crust. 
    more » « less
  3. Abstract In 2015 a geothermal exploration well was drilled on the island of Tutuila, American Samoa. The sample suite from the drill core provides 645 m of volcanic stratigraphy from a Samoan volcano, spanning 1.45 million years of volcanic history. In the Tutuila drill core, shield lavas with an EM2 (enriched mantle 2) signature are observed at depth, spanning 1.46 to 1.44 Ma. These are overlain by younger (1.35 to 1.17 Ma) shield lavas with a primordial “common” (focus zone) component interlayered with lavas that sample a depleted mantle component. Following ~1.15 Myr of volcanic quiescence, rejuvenated volcanism initiated at 24.3 ka and samples an EM1 (enriched mantle 1) component. The timing of the initiation of rejuvenated volcanism on Tutuila suggests that rejuvenated volcanism may be tectonically driven, as Samoan hotspot volcanoes approach the northern terminus of the Tonga Trench. This is consistent with a model where the timing of rejuvenated volcanism at Tutuila and at other Samoan volcanoes relates to their distance from the Tonga Trench. Notably, the Samoan rejuvenated lavas have EM1 isotopic compositions distinct from shield lavas that are geochemically similar to “petit spot” lavas erupted outboard of the Japan Trench and late stage lavas erupted at Christmas Island located outboard of the Sunda Trench. Therefore, like the Samoan rejuvenated lavas, petit spot volcanism in general appears to be related to tectonic uplift outboard of subduction zones, and existing geochemical data suggest that petit spots share similar EM1 isotopic signatures. 
    more » « less
  4. Central Baja California (BC) experienced tectonism and volcanism that shaped the landscape from the Miocene to Recent. One important feature is the San Ignacio trough (SIT) that hosted a marine seaway or embayment and acted as a physical barrier to animal and plant migration. This barrier may be responsible for a well-known break in the DNA, N and S of this region. Central BC has also hosted contemporary voluminous and chemically diverse volcanism. Radiometric ages provide important constraints on the origins and longevity of critical topographic features. The Baja GeoGenomics research group is investigating the nature and timing of Pliocene marine and tidal deposits in the NE-oriented, low-lying SIT, located W of the peninsular divide. These new data reveal that the Sierra San Francisco, a highland volcanic area immediately N of the SIT, is a series of volcanoes constructed of dacitic and andesitic Peleean domes with voluminous lahar and pyroclastic flow deposits. These calcalkaline rocks were previously thought to be subduction-related magmatism and part of the early to middle Miocene (~24–12 Ma) Comondú Group. However, zircon U-Pb and 40Ar/39Ar dates yield ages of 11-9 Ma. These data indicate the Sierra San Francisco erupted post-subduction and is not part of the lithologically similar but older Comondú Group. Within the SIT, 12km NE of San Ignacio at 200 m asl, newly mapped marine tidal deposits, informally called the San Regis beds, indicate that the SIT has been significantly uplifted. Mafic scoria interbedded in tidal deposits yield a groundmass 40Ar/39Ar age of about 4.2 ± 0.1 Ma. San Regis tidal beds are unconformably overlain by a rhyolite ash-flow tuff from the Quaternary La Reforma caldera situated to the E, on the Gulf of California coast. The highly mobile ash cloud flowed W into the SIT at least as far as the San Regis beds locality NE of San Ignacio. The tuff yielded a preliminary U-Pb zircon age of 1.09 ± 0.04 Ma and an 40Ar/39Ar anorthoclase age of 1.11± 0.01 Ma. These dates indicate that the ash-flow was one of the latest erupted from the caldera and its distribution was in part controlled by the SIT. In BC genetic diversity along the peninsula appears to change at the latitude of the SIT. Tidal and volcanic deposits suggest this topographic low persisted for over 4Ma and remains a distinctive feature in the topography today. 
    more » « less
  5. Central Baja California (BC) experienced tectonism and volcanism that shaped the landscape from the Miocene to Recent. One important feature is the San Ignacio trough (SIT) that hosted a marine seaway or embayment and acted as a physical barrier to animal and plant migration. This barrier may be responsible for a well-known break in the DNA, N and S of this region. Central BC has also hosted contemporary voluminous and chemically diverse volcanism. Radiometric ages provide important constraints on the origins and longevity of critical topographic features. The Baja GeoGenomics research group is investigating the nature and timing of Pliocene marine and tidal deposits in the NE-oriented, low-lying SIT, located W of the peninsular divide. These new data reveal that the Sierra San Francisco, a highland volcanic area immediately N of the SIT, is a series of volcanoes constructed of dacitic and andesitic Peleean domes with voluminous lahar and pyroclastic flow deposits. These calcalkaline rocks were previously thought to be subduction-related magmatism and part of the early to middle Miocene (~2412 Ma) Comondu Group. However, zircon U-Pb and 40Ar/39Ar dates yield ages of 11-9 Ma. These data indicate the Sierra San Francisco erupted post-subduction and is not part of the lithologically similar but older Comondu Group. Within the SIT, 12km NE of San Ignacio at 200 m asl, newly mapped marine tidal deposits, informally called the San Regis beds, indicate that the SIT has been significantly uplifted. Mafic scoria interbedded in tidal deposits yield a groundmass 40Ar/39Ar age of about 4.2 0.1 Ma. San Regis tidal beds are unconformably overlain by a rhyolite ash-flow tuff from the Quaternary La Reforma caldera situated to the E, on the Gulf of California coast. The highly mobile ash cloud flowed W into the SIT at least as far as the San Regis beds locality NE of San Ignacio. The tuff yielded a preliminary U-Pb zircon age of 1.09 0.04 Ma and an 40Ar/39Ar anorthoclase age of 1.11± 0.01 Ma. These dates indicate that the ash-flow was one of the latest erupted from the caldera and its distribution was in part controlled by the SIT. In BC genetic diversity along the peninsula appears to change at the latitude of the SIT. Tidal and volcanic deposits suggest this topographic low persisted for over 4Ma and remains a distinctive feature in the topography today. 
    more » « less