skip to main content

Title: RapidLiq: Software for Near-Real-Time Prediction of Soil Liquefaction
RapidLiq is a Windows software program for predicting liquefaction-induced ground failure using geospatial models, which are particularly suited for regional scale applications such as: (i) loss estimation and disasterMore>>
Publication Year:
soil liquefaction geospatial modelling near-real-time prediction
Award ID(s):
Sponsoring Org:
National Science Foundation
More Like this
  1. The 2019 Ridgecrest earthquake sequence produced a 4 July M 6.5 foreshock and a 5 July M 7.1 mainshock, along with 23 events with magnitudes greater than 4.5 in the 24 hr period following the mainshock. The epicenters of the two principal events were located in the Indian Wells Valley, northwest of Searles Valley near the towns of Ridgecrest, Trona, and Argus. We describe observed liquefaction manifestations including sand boils, fissures, and lateral spreading features, as well as proximate non‐ground failure zones that resulted from the sequence. Expanding upon results initially presented in a report of the Geotechnical Extreme Events Reconnaissance Association, we synthesize results of field mapping, aerial imagery, and inferences of ground deformations from Synthetic Aperture Radar‐based damage proxy maps (DPMs). We document incidents of liquefaction, settlement, and lateral spreading in the Naval Air Weapons Station China Lake US military base and compare locations of these observations to pre‐ and postevent mapping of liquefaction hazards. We describe liquefaction and ground‐failure features in Trona and Argus, which produced lateral deformations and impacts on several single‐story masonry and wood frame buildings. Detailed maps showing zones with and without ground failure are provided for these towns, along with mapped ground deformationsmore »along transects. Finally, we describe incidents of massive liquefaction with related ground failures and proximate areas of similar geologic origin without ground failure in the Searles Lakebed. Observations in this region are consistent with surface change predicted by the DPM. In the same region, geospatial liquefaction hazard maps are effective at identifying broad percentages of land with liquefaction‐related damage. We anticipate that data presented in this article will be useful for future liquefaction susceptibility, triggering, and consequence studies being undertaken as part of the Next Generation Liquefaction project.« less
  2. Abstract
    In the U.S. Pacific Northwest (PNW), the historic earthquake record is often insufficient to provide inputs to seismic-hazard analyses or to inform ground-motion predictions for certain seismic sources (e.g., the Cascadia Subduction Zone, CSZ). As a result, paleoseismic studies are commonly used to infer information about the seismic hazard. However, among the many forms of coseismic evidence, soil liquefaction provides the best, if not only, evidence from which the intensities of previous ground motions may be constrained. Accordingly, the overarching goal of this research is to use paleoliquefaction to elucidate previous ground motions in the PNW – both for CSZ events and others – and to further constrain the locations, magnitudes, and recurrence rates of such ruptures. Towards that goal, this paper: (i) reviews current paleoliquefaction inverse-analysis methods and their limited, prior applications in the PNW; (ii) compiles all PNW paleoliquefaction evidence from the literature into a GIS database, resulting in data from 185 study sites (e.g., feature locations, types, sizes, and ages); and (iii) develops maps – specific to the CSZ – that forecast paleoliquefaction for 30 different simulations of a CSZ event. These maps can be used to guide field explorations for new evidence, such that theyMore>>
  3. Seismic compression is the accrual of contractive volumetric strain in unsaturated or partially saturated sandy soils during earthquake shaking and has caused significant distress to overlying and nearby structures. The phenomenon can be well characterized by load-dependent, interaction macro-level fatigue theories. Toward this end, the Byrne cyclic shear-volumetric strain coupling model is expanded and calibrated for evaluating seismic compression for several soil types. In addition, the model was transformed to allow it to be implemented in a “simplified” manner, in addition to the original “non-simplified” formulation. Both implementation approaches are used to analyze a site in Japan impacted by the 2007, Mw6.6 Niigata-ken Chuetsu-oki earthquake. The results from the analyses are in general accord with the post-earthquake field observations and highlight the sensitivity of predicted magnitude of the seismic compression to the input variables used and modeling assumptions (e.g. relative density of the soil, magnitude of the volumetric threshold strain, orientation of the ground motions, settlement of soils below the ground water table, and accounting for multidirectional shaking). Although additional studies are needed to further validate the findings presented herein, estimation of relative density and threshold shear strain of the soil and ground motion orientation individually have moderate-to-significant influence onmore »the computed magnitude of seismic compression, but they have a significant influence when taken in combination. Also, the seismic compression models can seemingly be used to predict the settlement in fully saturated sand when the excess pore water pressures are limited. Finally, accounting for multidirectional shaking has a significant influence on the computed magnitude of seismic compression.

    « less
  4. The ability to quickly, efficiently and reliably characterize changes in the landscape following an earthquake has remained a challenge for the earthquake engineering profession. The 2016 Mw7.8 Kaikoura earthquake provided a unique opportunity to document changes in topography following an earthquake on a regional scale using satellite derived high-resolution digital models. Along-track stereo satellite imagery had been collected for the pre-event topography. Satellites were tasked and collected stereo-mode post-event imagery. Both sets of images were used to create digital surface models (DSMs) of the affected area before and after the event. The procedure followed and indicative results for the Leader valley are presented with emphasis on the challenges associated with the implementation of the technique for the first time in this environment. The valley is of interest because of the variety of features it includes, i.e., the large Leader landslide, smaller landslides, stable sloping and flat ground as well as fault rupture lineaments. The open-source SETSM software is used to provide multiple DSMs. Our workflow is described and results are compared against the DSM created using Structure-from-Motion with imagery collected by Unmanned Aerial Vehicles (UAV) and aerial LIDAR. Overall, the sub-meter agreement between the DSM created using satellites and themore »DSM created using UAV and LIDAR datasets demonstrates viability for use in seismic studies, but features smaller than about 0.5 m are more difficult to discern.« less
  5. Following the November 14 2016 Mw7.8 Kaikoura earthquake, field expeditions were undertaken using Unmanned Aerial Vehicles (UAVs) to map 25 sites of scientific interest with a plan area of 7.2 km2. A total of 23,172 images collected by the UAVs were used as input in Structure-from-Motion (SfM) to create 3D models of the target areas with a focus on landslides and fault rupture. Two sites are presented in more detail as examples of the data generated; a section of the Kekerengu fault that ruptured during the earthquake, and the Limestone Hills landslide. The sites were mapped at high resolution with ground sampling distance that varied from 0.5 to 7.0 cm/pixel. The developed SfM models were compared to 1-m aerial LiDAR data and the results were found to be comparable. However, the higher resolution of the SfM digital surface model (DSM), paired with the imagery facilitated more detailed interpretations, highlighting the usefulness of the UAV-enabled SfM as a mobile and effective technique for documenting perishable post-earthquake reconnaissance data.