skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The distribution and function of GDE2, a regulator of spinal motor neuron survival, are disrupted in Amyotrophic Lateral Sclerosis
Abstract Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the viability of upper and lower motor neurons. Current options for treatment are limited, necessitating deeper understanding of the mechanisms underlying ALS pathogenesis. Glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) is a six-transmembrane protein that acts on the cell surface to cleave the glycosylphosphatidylinositol (GPI)-anchor that tethers some proteins to the membrane. GDE2 is required for the survival of spinal motor neurons but whether GDE2 neuroprotective activity is disrupted in ALS is not known. We utilized a combination of mouse models and patient post-mortem samples to evaluate GDE2 functionality in ALS. Haplogenetic reduction of GDE2 exacerbated motor neuron degeneration and loss in SOD1 G93A mice but not in control SOD1 WT transgenic animals, indicating that GDE2 neuroprotective function is diminished in the context of SOD1 G93A . In tissue samples from patients with ALS, total levels of GDE2 protein were equivalent to healthy controls; however, membrane levels of GDE2 were substantially reduced. Indeed, GDE2 was found to aberrantly accumulate in intracellular compartments of ALS motor cortex, consistent with a disruption of GDE2 function at the cell surface. Supporting the impairment of GDE2 activity in ALS, tandem-mass-tag mass spectrometry revealed a pronounced reduction of GPI-anchored proteins released into the CSF of patients with ALS compared with control patients. Taken together, this study provides cellular and biochemical evidence that GDE2 distribution and activity is disrupted in ALS, supporting the notion that the failure of GDE2-dependent neuroprotective pathways contributes to neurodegeneration and motor neuron loss in disease. These observations highlight the dysregulation of GPI-anchored protein pathways as candidate mediators of disease onset and progression and accordingly, provide new insight into the mechanisms underlying ALS pathogenesis.  more » « less
Award ID(s):
2018114
PAR ID:
10345056
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Acta Neuropathologica Communications
Volume:
10
Issue:
1
ISSN:
2051-5960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Amyotrophic lateral sclerosis (ALS) has an interactive, multifactorial etiology that makes treatment success elusive. This study evaluates how regulatory dynamics impact disease progression and treatment. Computational models of wild-type (WT) and transgenic SOD1-G93A mouse physiology dynamics were built using the first-principles-based first-order feedback framework of dynamic meta-analysis with parameter optimization. Two in silico models were developed: a WT mouse model to simulate normal homeostasis and a SOD1-G93A ALS model to simulate ALS pathology dynamics and their response to in silico treatments. The model simulates functional molecular mechanisms for apoptosis, metal chelation, energetics, excitotoxicity, inflammation, oxidative stress, and proteomics using curated data from published SOD1-G93A mouse experiments. Temporal disease progression measures (rotarod, grip strength, body weight) were used for validation. Results illustrate that untreated SOD1-G93A ALS dynamics cannot maintain homeostasis due to a mathematical oscillating instability as determined by eigenvalue analysis. The onset and magnitude of homeostatic instability corresponded to disease onset and progression. Oscillations were associated with high feedback gain due to hypervigilant regulation. Multiple combination treatments stabilized the SOD1-G93A ALS mouse dynamics to near-normal WT homeostasis. However, treatment timing and effect size were critical to stabilization corresponding to therapeutic success. The dynamics-based approach redefines therapeutic strategies by emphasizing the restoration of homeostasis through precisely timed and stabilizing combination therapies, presenting a promising framework for application to other multifactorial neurodegenerative diseases. 
    more » « less
  2. Abstract Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive breakdown of neural circuits which leads to motoneuron death. Earlier work from our lab showed that dysregulation of inhibitory V1 interneurons precedes the degeneration of excitatory V2a interneurons and motoneurons and that stabilizing V1–motoneuron connections improved motor function and saved motoneurons in the SOD1G93AALS mouse model. However, the optimal timing for this intervention remains unclear. To address this, we developed a spiking neural network model of spinal locomotor circuits to simulate healthy and ALS-like conditions. By modeling changes in network connectivity and synaptic dynamics, we predict that V1 dysregulation induces hyperexcitation in motoneurons which is preferentially observed in flexor motoneurons leading to the disruption of flexor-extensor coordination, and potentially contributing to selective vulnerability of flexor motoneurons. Stabilizing V1 synapses preserved motor output even after motoneuron loss, suggesting that therapeutic benefit is possible into symptomatic stages. However, model predictions also highlighted that after sustained synaptic loss and the development of slower synaptic dynamics within the network, synaptic stabilization leads to maladaptive extensor-biased activity, suggesting that excitatory/inhibitory balance impacts treatment effectiveness. Finally, the model indicated that V1 stabilization could lead to rescue of the V2a excitatory interneurons, a finding that we were able to confirm experimentally in the SOD1G93AALS mouse model. By exploring different scenarios of synaptic loss and cell dysregulation during synaptic stabilization, our models provide a framework for predicting candidate time windows for spinal circuit interventions, which may guide future preclinical investigations. 
    more » « less
  3. Abstract The misfolding and aggregation of superoxide dismutase 1 (SOD1) and its mutants has been implicated in amyotrophic lateral sclerosis (ALS). In this study, we have created three peptide conjugates with the antioxidant pentacyclic terpene celastrol and examined their interactions with SOD1 and its mutants A4V and G93A. The peptides YYIVS, MPDAHL, and GSGGL are derived from natural sources and are known for their inherent antioxidant properties. Docking studies revealed that most conjugates showed strong binding with the metal binding and electrostatic loops as well as the β1, β5, and β6 hydrophobic core of SOD1. The conjugates were synthesized and self‐assembled into nanoassemblies. Surface plasmon resonance studies further confirmed the binding interactions of the nanoassemblies with the SOD1 proteins. The nanoassemblies were found to internalize into HEK293T cells. The HEK 293T cells were then transfected with GFP fused WT (Wild Type), A4V and G93A SOD1 mutants. Flow cytometry revealed that treatment with celastrol‐peptide nanoassemblies, affected the fluorescence of the SOD1 protein, implying their role in modulating SOD1, particularly for the mutants. N–Acetyl–Leu–Leu–Norleucinal (ALLN) induced SOD1 aggregation was also affected upon treatment with the nanoassemblies. These results suggest that the nanoassemblies may potentially modulate the activity and structure of SOD1. 
    more » « less
  4. The heterodimerization of wild-type (WT) Cu, Zn superoxide dismutase-1 (SOD1) and mutant SOD1 might be a critical step in the pathogenesis of SOD1-linked amyotrophic lateral sclerosis (ALS). Post-translational modifications that accelerate SOD1 heterodimerization remain unidentified. Here, we used capillary electrophoresis to quantify the effect of cysteine-111 oxidation on the rate and free energy of ALS mutant/WT SOD1 heterodimerization. The oxidation of Cys111-β-SH to sulfinic and sulfonic acid (by hydrogen peroxide) increased rates of heterodimerization (with unoxidized protein) by ∼3-fold. Cysteine oxidation drove the equilibrium free energy of SOD1 heterodimerization by up to ΔΔG = −5.11 ± 0.36 kJ mol–1. Molecular dynamics simulations suggested that this enhanced heterodimerization, between oxidized homodimers and unoxidized homodimers, was promoted by electrostatic repulsion between the two “dueling” Cys111-SO2–/SO3–, which point toward one another in the homodimeric state. Together, these results suggest that oxidation of Cys-111 promotes subunit exchange between oxidized homodimers and unoxidized homodimers, regardless of whether they are mutant or WT dimers. 
    more » « less
  5. The spatiotemporal organization of proteins and lipids on the cell surface has direct functional consequences for signaling, sorting, and endocytosis. Earlier studies have shown that multiple types of membrane proteins, including transmembrane proteins that have cytoplasmic actin binding capacity and lipid-tethered glycosylphosphatidylinositol-anchored proteins (GPI-APs), form nanoscale clusters driven by active contractile flows generated by the actin cortex. To gain insight into the role of lipids in organizing membrane domains in living cells, we study the molecular interactions that promote the actively generated nanoclusters of GPI-APs and transmembrane proteins. This motivates a theoretical description, wherein a combination of active contractile stresses and transbilayer coupling drives the creation of active emulsions, mesoscale liquid order (lo) domains of the GPI-APs and lipids, at temperatures greater than equilibrium lipid phase segregation. To test these ideas, we use spatial imaging of molecular clustering combined with local membrane order, and we demonstrate that mesoscopic domains enriched in nanoclusters of GPI-APs are maintained by cortical actin activity and transbilayer interactions and exhibit significant lipid order, consistent with predictions of the active composite model. 
    more » « less