skip to main content


Title: Genetic divergence and ephemeral barriers: Reconciling genetic and geological timescales within geogenomics
Understanding the timescales on which different geologic processes influence genetic divergence is crucial to defining and testing geogenomic hypotheses and characterizing Earth- life evolution. To see if we can recover a genetic signal produced by a hypothetical physical barrier to gene flow, we used a geographically explicit simulation approach. We used the CDMetaPop software to simulate heritable genetic, nonadaptive, data for 20 geographically distinct populations distributed throughout the Baja California peninsula of Mexico, a landscape where a transpeninsular seaway barrier has been proposed to have isolated the southern peninsula and caused the observed latitudinal genetic divergence in over 80 terrestrial species. We simulated 10,000 generations of isolation by a barrier under two dispersal scenarios (1 km and 100 km of max. dispersal from population of origin per generation) and three DNA substitution rates (10-7, 10-8 and 10-9 nucleotide substitutions per site per generation). Our simulations indicate that a physical barrier can produce strong genetic divergence within 10,000 generations, comparable to the continuum of values observed in nature for different taxonomic groups and geological settings. We found that the generation time of the organism was by far the most important factor dictating the rate of divergence. Evaluating different generation times (0.02, 0.2, 2 and 20 years), showed that species with longer generation times require longer periods of isolation to accumulate genetic divergence over 10k generations (~1 My). Simulating 10,000 generations of gene flow following removal of the barrier showed that the divergence signal eroded quickly, in less than 1,000 generations in every scenario, a pattern supported by theory from population genetics. These results are particularly relevant to geogenomic studies because they show that ephemeral gene flow barriers produce different magnitudes of genetic signals depending on attributes of the organism, particularly generation time, and that if reproductive isolation is not achieved during isolation, then the evolutionary signal of an ephemeral barrier may not develop. This work helps guide the limits of detectability when integrating genomic data with geological and climatic processes.  more » « less
Award ID(s):
1925535
NSF-PAR ID:
10345182
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
American Geophysical Union
Page Range / eLocation ID:
B55L-1347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aim: To review the histories of the Colorado River and North American monsoon system to ascertain their effects on the genetic divergence of desert‐adapted animals. Location: Lower Colorado River region, including Mojave and Sonoran deserts, United States. Methods: We synthesized recent geological literature to summarize initiation phases of lower Colorado River evolution, their discrepancies, and potential for post‐vicariance dispersal of animals across the river. We simulated data under geological models and performed a meta‐analysis of published and unpublished genetic data including population diversity metrics, relatedness and historical migration rates to assess alternative divergence hypotheses. Results: The two models for arrival of the Colorado River into the Gulf of California impose east‐west divergence ages of 5.3 and 4.8 Ma, respectively. We found quantifiable river‐associated differentiation in the lower Colorado River region in reptiles, arachnids and mammals relative to flying insects. However, topological statistics, historical migration rates and cross‐river extralimital populations suggest that the river should be considered a leaky barrier that filters, rather than prevents, gene flow. Most markers violated neutrality tests. Differential adaptation to monsoon‐based precipitation differences may contribute to divergence between Mojave and Sonoran populations and should be tested. Main Conclusions: Rivers are dynamic features that can both limit and facilitate gene flow through time, the impacts of which are mitigated by species‐specific life history and dispersal traits. The Southwest is a geo‐climatically complex region with the potential to produce pseudocongruent patterns of genetic divergence, offering a good setting to evaluate intermediate levels of geological‐biological (geobiological) complexity. 
    more » « less
  2. Abstract Aim

    To review the histories of the Colorado River and North American monsoon system to ascertain their effects on the genetic divergence of desert‐adapted animals.

    Location

    Lower Colorado River region, including Mojave and Sonoran deserts, United States.

    Methods

    We synthesized recent geological literature to summarize initiation phases of lower Colorado River evolution, their discrepancies, and potential for post‐vicariance dispersal of animals across the river. We simulated data under geological models and performed a meta‐analysis of published and unpublished genetic data including population diversity metrics, relatedness and historical migration rates to assess alternative divergence hypotheses.

    Results

    The two models for arrival of the Colorado River into the Gulf of California impose east‐west divergence ages of 5.3 and 4.8 Ma, respectively. We found quantifiable river‐associated differentiation in the lower Colorado River region in reptiles, arachnids and mammals relative to flying insects. However, topological statistics, historical migration rates and cross‐river extralimital populations suggest that the river should be considered a leaky barrier that filters, rather than prevents, gene flow. Most markers violated neutrality tests. Differential adaptation to monsoon‐based precipitation differences may contribute to divergence between Mojave and Sonoran populations and should be tested.

    Main Conclusions

    Rivers are dynamic features that can both limit and facilitate gene flow through time, the impacts of which are mitigated by species‐specific life history and dispersal traits. The Southwest is a geo‐climatically complex region with the potential to produce pseudocongruent patterns of genetic divergence, offering a good setting to evaluate intermediate levels of geological‐biological (geobiological) complexity.

     
    more » « less
  3. Abstract

    Divergence is often ephemeral, and populations that diverge in response to regional topographic and climatic factors may not remain reproductively isolated when they come into secondary contact. We investigated the geographical structure and evolutionary history of population divergence withinSceloporus occidentalis(western fence lizard), a habitat generalist with a broad distribution that spans the major biogeographical regions of Western North America. We used double digest RAD sequencing to infer population structure, phylogeny and demography. Population genetic structure is hierarchical and geographically structured with evidence for gene flow between biogeographical regions. Consistent with the isolation–expansion model of divergence during Quaternary glacial–interglacial cycles, gene flow and secondary contact are supported as important processes explaining the demographic histories of populations. Although populations may have diverged as they spread northward in a ring‐like manner around the Sierra Nevada and southern Cascade Ranges, there is strong evidence for gene flow among populations at the northern terminus of the ring. We propose the concept of an “ephemeral ring species” and contrastS. occidentaliswith the classic North American ring species,Ensatina eschscholtzii. Contrary to expectations of lower genetic diversity at northern latitudes following post‐Quaternary‐glaciation expansion, the ephemeral nature of divergence inS. occidentalishas produced centres of high genetic diversity for different reasons in the south (long‐term stability) vs. the north (secondary contact).

     
    more » « less
  4. Abstract

    Divergence in sexual signals may drive reproductive isolation between lineages, but behavioural barriers can weaken in contact zones. Here, we investigate the role of song as a behavioural and genetic barrier in a contact zone between two subspecies of white‐crowned sparrows (Zonotrichia leucophrys). We employed a reduced genomic data set to assess population structure and infer the history underlying divergence, gene flow and hybridization. We also measured divergence in song and tested behavioural responses to song using playback experiments within and outside the contact zone. We found that the subspecies form distinct genetic clusters, and demographic inference supported a model of secondary contact. Song phenotype, particularly length of the first note (a whistle), was a significant predictor of genetic subspecies identity and genetic distance along the hybrid zone, suggesting a close link between song and genetic divergence in this system. Individuals from both parental and admixed localities responded significantly more strongly to their own song than to the other subspecies song, supporting song as a behavioural barrier. Putative parental and admixed individuals were not significantly different in their strength of discrimination between own and other songs; however, individuals from admixed localities tended to discriminate less strongly, and this difference in discrimination strength was explained by song dissimilarity as well as genetic distance. Therefore, we find that song acts as a reproductive isolating mechanism that is potentially weakening in a contact zone between the subspecies. Our findings also support the hypothesis that intraspecific song variation can reduce gene flow between populations.

     
    more » « less
  5. Abstract

    Many populations, especially in insects, fluctuate in size, and periods of particularly low population size can have strong effects on genetic variation. Effects of demographic bottlenecks on genetic diversity of single populations are widely documented. Effects of bottlenecks on genetic structure among multiple interconnected populations are less studied, as are genetic changes across multiple cycles of demographic collapse and recovery. We take advantage of a long‐term data set comprising demographic, genetic and movement data from a network of populations of the butterfly,Parnassius smintheus, to examine the effects of fluctuating population size on spatial genetic structure. We build on a previous study that documented increased genetic differentiation and loss of spatial genetic patterns (isolation by distance and by intervening forest cover) after a network‐wide bottleneck event. Here, we show that genetic differentiation was reduced again and spatial patterns returned to the system extremely rapidly, within three years (i.e. generations). We also show that a second bottleneck had similar effects to the first, increasing differentiation and erasing spatial patterns. Thus, bottlenecks consistently drive random divergence of allele frequencies among populations in this system, but these effects are rapidly countered by gene flow during demographic recovery. Our results reveal a system in which the relative influence of genetic drift and gene flow continually shift as populations fluctuate in size, leading to cyclic changes in genetic structure. Our results also suggest caution in the interpretation of patterns of spatial genetic structure, and its association with landscape variables, when measured at only a single point in time.

     
    more » « less