skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Scalable Graph Learning Approach to Capacitated Vehicle Routing Problem Using Capsule Networks and Attention Mechanism
Abstract This paper introduces a new graph neural network architecture for learning solutions of Capacitated Vehicle Routing Problems (CVRP) as policies over graphs. CVRP serves as an important benchmark for a wide range of combinatorial planning problems, which can be adapted to manufacturing, robotics and fleet planning applications. Here, the specific aim is to demonstrate the significant real-time executability and (beyond training) scalability advantages of the new graph learning approach over existing solution methods. While partly drawing motivation from recent graph learning methods that learn to solve CO problems such as multi-Traveling Salesman Problem (mTSP) and VRP, the proposed neural architecture presents a novel encoder-decoder architecture. Here the encoder is based on Capsule networks, which enables better representation of local and global information with permutation invariant node embeddings; and the decoder is based on the Multi-head attention (MHA) mechanism allowing sequential decisions. This architecture is trained using a policy gradient Reinforcement Learning process. The performance of our approach is favorably compared with state-of-the-art learning and non-learning methods for a benchmark suite of Capacitated-VRP (CVRP) problems. A further study on the CVRP with demand uncertainties is conducted to explore how this Capsule-Attention Mechanism architecture can be extended to handle real-world uncertainties by embedding them through the encoder.  more » « less
Award ID(s):
2048020
PAR ID:
10345362
Author(s) / Creator(s):
;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
ISBN:
978-0-7918-8623-6
Format(s):
Medium: X
Location:
St. Louis, Missouri, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In various applications of multi-robotics in disaster response, warehouse management, and manufacturing, tasks that are known a priori and tasks added during run time need to be assigned efficiently and without conflicts to robots in the team. This multi-robot task allocation (MRTA) process presents itself as a combinatorial optimization (CO) problem that is usually challenging to be solved in meaningful timescales using typical (mixed)integer (non)linear programming tools. Building on a growing body of work in using graph reinforcement learning to learn search heuristics for such complex CO problems, this paper presents a new graph neural network architecture called the covariant attention mechanism (CAM). CAM can not only generalize but also scale to larger problems than that encountered in training, and handle dynamic tasks. This architecture combines the concept of covariant compositional networks used here to embed the local structures in task graphs, with a context module that encodes the robots’ states. The encoded information is passed onto a decoder designed using multi-head attention mechanism. When applied to a class of MRTA problems with time deadlines, robot ferry range constraints, and multi-trip settings, CAM surpasses a state-of-the-art graph learning approach based on the attention mechanism, as well as a feasible random-walk baseline across various generalizability and scalability tests. Performance of CAM is also found to be at par with a high-performing non-learning baseline called BiG-MRTA, while noting up to a 70-fold improvement in decision-making efficiency over this baseline. 
    more » « less
  2. In this paper, we are the first to propose a new graph convolution-based decoder namely, Cascaded Graph Convolutional Attention Decoder (G-CASCADE), for 2D medical image segmentation. G-CASCADE progressively refines multi-stage feature maps generated by hierarchical transformer encoders with an efficient graph convolution block. The encoder utilizes the self-attention mechanism to capture long-range dependencies, while the decoder refines the feature maps preserving long-range information due to the global receptive fields of the graph convolution block. Rigorous evaluations of our decoder with multiple transformer encoders on five medical image segmentation tasks (i.e., Abdomen organs, Cardiac organs, Polyp lesions, Skin lesions, and Retinal vessels) show that our model outperforms other state-of-the-art (SOTA) methods. We also demonstrate that our decoder achieves better DICE scores than the SOTA CASCADE decoder with 80.8% fewer parameters and 82.3% fewer FLOPs. Our decoder can easily be used with other hierarchical encoders for general-purpose semantic and medical image segmentation tasks. 
    more » « less
  3. null (Ed.)
    The paper proposes a new text recognition network for scene-text images. Many state-of-the-art methods employ the attention mechanism either in the text encoder or decoder for the text alignment. Although the encoder-based attention yields promising results, these schemes inherit noticeable limitations. They perform the feature extraction (FE) and visual attention (VA) sequentially, which bounds the attention mechanism to rely only on the FE final single-scale output. Moreover, the utilization of the attention process is limited by only applying it directly to the single scale feature-maps. To address these issues, we propose a new multi-scale and encoder-based attention network for text recognition that performs the multi-scale FE and VA in parallel. The multi-scale channels also undergo regular fusion with each other to develop the coordinated knowledge together. Quantitative evaluation and robustness analysis on the standard benchmarks demonstrate that the proposed network outperforms the state-of-the-art in most cases. 
    more » « less
  4. In design, fabrication, and control problems, we are often faced with the task of synthesis, in which we must generate an object or configuration that satisfies a set of constraints while maximizing one or more objective functions. The synthesis problem is typically characterized by a physical process in which many different realizations may achieve the goal. This many-to-one map presents challenges to the supervised learning of feed-forward synthesis, as the set of viable designs may have a complex structure. In addition, the non-differentiable nature of many physical simulations prevents efficient direct optimization. We address both of these problems with a two-stage neural network architecture that we may consider to be an autoencoder. We first learn the decoder: a differentiable surrogate that approximates the many-to-one physical realization process. We then learn the encoder, which maps from goal to design, while using the fixed decoder to evaluate the quality of the realization. We evaluate the approach on two case studies: extruder path planning in additive manufacturing and constrained soft robot inverse kinematics. We compare our approach to direct optimization of the design using the learned surrogate, and to supervised learning of the synthesis problem. We find that our approach produces higher quality solutions than supervised learning, while being competitive in quality with direct optimization, at a greatly reduced computational cost. 
    more » « less
  5. In design, fabrication, and control problems, we are often faced with the task of synthesis, in which we must generate an object or configuration that satisfies a set of constraints while maximizing one or more objective functions. The synthesis problem is typically characterized by a physical process in which many different realizations may achieve the goal. This many-to-one map presents challenges to the supervised learning of feed-forward synthesis, as the set of viable designs may have a complex structure. In addition, the non-differentiable nature of many physical simulations prevents efficient direct optimization. We address both of these problems with a two-stage neural network architecture that we may consider to be an autoencoder. We first learn the decoder: a differentiable surrogate that approximates the many-to-one physical realization process. We then learn the encoder, which maps from goal to design, while using the fixed decoder to evaluate the quality of the realization. We evaluate the approach on two case studies: extruder path planning in additive manufacturing and constrained soft robot inverse kinematics. We compare our approach to direct optimization of the design using the learned surrogate, and to supervised learning of the synthesis problem. We find that our approach produces higher quality solutions than supervised learning, while being competitive in quality with direct optimization, at a greatly reduced computational cost. 
    more » « less