skip to main content


Title: Structural and Functional Characterization of European Corn Borer, Ostrinia nubilalis, Pheromone Binding Protein 3
Ostrinia nubilalis, a lepidopteran moth, also known as the European corn borer, has a major impact on the production of economically important crops in the United States and Europe. The female moth invites the male moth for mating through the release of pheromones, a volatile chemical signal. Pheromone binding proteins (PBPs) present in the male moth antennae are believed to pick up the pheromones, transport them across the aqueous sensillum lymph, and deliver them to the olfactory receptor neurons. Here we report for the first time the cloning, expression, refolding, purification, and structural characterization of Ostrinia nubilalis PBP3 (OnubPBP3). The recombinant protein showed nanomolar affinity to each isomer of the Ostrinia pheromones, E- and Z-11-tetradecenyl acetate. In a pH titration study by nuclear magnetic resonance, the protein exhibited an acid-induced unfolding at pH below 5.5. The molecular dynamics simulation study demonstrated ligand-induced conformational changes in the protein with both E- and Z-isomers of the Ostrinia pheromone. The simulation studies showed that while protein flexibility decreases upon binding to E-pheromone, it increases when bound to Z-pheromone. This finding suggests that the OnubPBP3 complex with E-pheromone is more stable than with Z-pheromone.  more » « less
Award ID(s):
1726397 1807722
NSF-PAR ID:
10345462
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of agricultural and food chemistry
Volume:
69
Issue:
46
ISSN:
1520-5118
Page Range / eLocation ID:
14013-14023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Patterns of mating for the European corn borer (Ostrinia nubilalis) moth depend in part on variation in sex‐pheromone blend. The ratio of (E)‐11‐ and (Z)‐11‐tetradecenyl acetate (E11‐ and Z11‐14:OAc) in the pheromone blend that females produce and males respond to differs between strains ofO. nubilalis. Populations also vary in female oviposition preference for and larval performance on maize (C4) and nonmaize (C3) host plants. The relative contributions of sexual and ecological trait variation to the genetic structure ofO. nubilalisremains unknown. Host‐plant use (13C/14C ratios) and genetic differentiation were estimated among sympatric E and Z pheromone strainO. nubilalismales collected in sex‐pheromone baited traps at 12 locations in Pennsylvania and New York between 2007 and 2010. Among genotypes at 65 single nucleotide polymorphism marker loci, variance at a position in the pheromone gland fatty acyl‐reductase (pgfar) gene at the locus responsible for determining female pheromone ratio (Pher) explained 64% of the total genetic differentiation between males attracted to different pheromones (male response,Resp), providing evidence of sexual inter‐selection at these unlinked loci. Principal coordinate, Bayesian clustering, and distance‐based redundancy analysis (dbRDA) demonstrate that host plant history or geography does not significantly contribute to population variation or differentiation among males. In contrast, these analyses indicate that pheromone response andpgfar‐defined strain contribute significantly to population genetic differentiation. This study suggests that behavioural divergence probably plays a larger role in driving genetic variation compared to host plant‐defined ecological adaptation.

     
    more » « less
  2. Ostrinia furnacalis, a lepidopteran moth, is an invasive pest found in Asia, Australia, Africa and parts of the United States. The Ostrinia furnacalis pheromone-binding protein2 (OfurPBP2), present in the male moth antenna, plays a role in the detection of female-secreted pheromone in a process that leads to mating. To understand the structural mechanism of pheromone binding and release in this pest, we have initiated characterization of OfurPBP2 by solution NMR. Here, we report the backbone resonance assignments and the secondary structural elements of OfurPBP2 at pH 6.5 using uniformly 13C, 15N-labeled protein with various triple resonance NMR experiments. The assignments are 97 % completed for backbone and 88 % completed for side-chain resonances. The secondary structure of OfurPBP2, based on backbone chemical shifts, consists of eight α-helices, including a well-structured C-terminal helix. 
    more » « less
  3. Abstract

    Lepidopteran male moths have an extraordinarily sensitive olfactory system that is capable of detecting and responding to minute amounts of female-secreted pheromones over great distances. Pheromone-binding proteins (PBPs) in male antennae ferry the hydrophobic ligand across the aqueous lymph to the olfactory receptor neuron triggering the response. PBPs bind ligands at physiological pH of the lymph and release them at acidic pH near the receptor while undergoing a conformational change. InAnthereae polyphemusPBP1, ligand binding to the hydrophobic pocket and its release is regulated by two biological gates: His70 and His95 at one end of the pocket and C-terminus tail at the other end. Interestingly, in Asian corn borerOstrinia furnacalisPBP2 (OfurPBP2), critical residues for ligand binding and release are substituted in both biological gates. The impact of these substitutions on the ligand binding and release mechanism in OfurPBP2 is not known. We report here overexpression of soluble OfurPBP2 and structural characterization at high and low pH by circular dichroism (CD) and NMR. Ligand binding and ab initio model development were carried out with fluorescence and small-angle X-ray scattering (SAXS) respectively. OfurPBP2 in solution at pH 6.5 is homogeneous, well-folded and has a compact globular shape.

     
    more » « less
  4. Abstract BACKGROUND

    Geographic variation in male response to sex pheromone lures has been studied in the field in a number of moth species. However, only a few studies have investigated geographic variation in female calling and sex pheromone under field conditions. For an effective field implementation of sex pheromone lures, it is essential to know the local sex pheromone blend and local timing of sexual communication. We investigated the level and extent of geographic variation in the sexual communication of the important agricultural pestHelicoverpa armigera(Lepidoptera, Noctuidae) in three continents.

    RESULTS

    We found there is no genetic variation in the calling behavior ofH. armigera. In the female sex pheromone, we found more between‐population variation than within‐population variation. In male response experiments, we found geographic variation as well. Strikingly, when adding the antagonistic compound Z11‐16:OAc to the pheromone blend ofH. armigera, significantly fewer males were caught in Australia and China, but not in Spain. This variation is likely not only due to local environmental conditions, such as photoperiod and temperature, but also to the presence of other closely related species with which communication interference may occur.

    Conclusion

    Finding geographic variation in both the female sexual signal and the male response in this pest calls for region‐specific pheromone lures. Our study shows that the analysis of geographic variation in moth female sex pheromones as well as male responses is important for effectively monitoring pest species that occur around the globe. © 2020 The Authors.Pest Management Sciencepublished by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

     
    more » « less
  5. Abstract

    Reconstructing a robust phylogenetic framework is key to understanding the ecology and evolution of many economically important taxa. The crambid moth genusOstriniacontains multiple agricultural pests, and its classification and phylogeny has remained controversial because of the paucity of characters and the lack of clear morphological boundaries for its species. To address these issues, we inferred a molecular phylogeny ofOstriniausing a phylogenomic dataset containing 498 loci and 115 197 nucleotide sites and examined whether traditional morphological characters corroborate our molecular results. Our results strongly support the monophyly of one of theOstriniaspecies groups but surprisingly do not support the monophyly of the other two. Based on the extensive morphological examination and broadly representative taxon sampling of the phylogenomic analyses, we propose a revised classification of the genus, defined by three species groups (Ostrinia nubilalisspecies group,Ostrinia obumbratalisspecies group, andOstrinia penitalisspecies group), which differs from the traditional classification of Mutuura & Munroe (1970). Morphological and molecular evidence reveal the presence of a new North American species,Ostrinia multispinosaYangsp.n., closely related toO.obumbratalis. Our analyses indicate that theOstriniaancestral larval host preference was for dicots, and thatO.nubilalis(European corn borer) andOstrinia furnacalis(Asian corn borer) independently evolved a preference for feeding on monocots (i.e., maize). Males of a fewOstriniaspecies have enlarged, grooved midtibiae with brush organs that are known to attract females to increase mating success during courtship, which may represent a derived condition. Our study provides a strong evolutionary framework for this agriculturally important insect lineage.

     
    more » « less