skip to main content


Title: Non-linearly realized discrete symmetries
A bstract While non-linear realizations of continuous symmetries feature derivative interactions and have no potential, non-linear realizations of discrete symmetries feature non-derivative interactions and have a highly suppressed potential. These Goldstone bosons of discrete symmetries have a non-zero potential, but the potential generated from quantum corrections is inherently very highly suppressed. We explore various discrete symmetries and to what extent the potential is suppressed for each of them.  more » « less
Award ID(s):
1914480
NSF-PAR ID:
10345725
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2020
Issue:
10
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Discrete symmetries are spatially ubiquitous but are often hidden in internal states of systems where they can have especially profound consequences. In this work we create and verify exotic magnetic phases of atomic spinor Bose–Einstein condensates that, despite their continuous character and intrinsic spatial isotropy, exhibit complex discrete polytope symmetries in their topological defects. Using carefully tailored spinor rotations and microwave transitions, we engineer singular line defects whose quantization conditions, exchange statistics, and dynamics are fundamentally determined by these underlying symmetries. We show how filling the vortex line singularities with atoms in a variety of different phases leads to core structures that possess magnetic interfaces with rich combinations of discrete and continuous symmetries. Such defects, with their non-commutative properties, could provide unconventional realizations of quantum information and interferometry.

     
    more » « less
  2. Embedding properties of network realizations of dissipative reduced order models Jörn Zimmerling, Mikhail Zaslavsky,Rob Remis, Shasri Moskow, Alexander Mamonov, Murthy Guddati, Vladimir Druskin, and Liliana Borcea Mathematical Sciences Department, Worcester Polytechnic Institute https://www.wpi.edu/people/vdruskin Abstract Realizations of reduced order models of passive SISO or MIMO LTI problems can be transformed to tridiagonal and block-tridiagonal forms, respectively, via dierent modications of the Lanczos algorithm. Generally, such realizations can be interpreted as ladder resistor-capacitor-inductor (RCL) networks. They gave rise to network syntheses in the rst half of the 20th century that was at the base of modern electronics design and consecutively to MOR that tremendously impacted many areas of engineering (electrical, mechanical, aerospace, etc.) by enabling ecient compression of the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to their compressing properties, network realizations can be used to embed the data back into the state space of the underlying continuum problems. In more recent works of the authors Krein's ideas gave rise to so-called nite-dierence Gaussian quadrature rules (FDGQR), allowing to approximately map the ROM state-space representation to its full order continuum counterpart on a judicially chosen grid. Thus, the state variables can be accessed directly from the transfer function without solving the full problem and even explicit knowledge of the PDE coecients in the interior, i.e., the FDGQR directly learns" the problem from its transfer function. This embedding property found applications in PDE solvers, inverse problems and unsupervised machine learning. Here we show a generalization of this approach to dissipative PDE problems, e.g., electromagnetic and acoustic wave propagation in lossy dispersive media. Potential applications include solution of inverse scattering problems in dispersive media, such as seismic exploration, radars and sonars. To x the idea, we consider a passive irreducible SISO ROM fn(s) = Xn j=1 yi s + σj , (62) assuming that all complex terms in (62) come in conjugate pairs. We will seek ladder realization of (62) as rjuj + vj − vj−1 = −shˆjuj , uj+1 − uj + ˆrj vj = −shj vj , (63) for j = 0, . . . , n with boundary conditions un+1 = 0, v1 = −1, and 4n real parameters hi, hˆi, ri and rˆi, i = 1, . . . , n, that can be considered, respectively, as the equivalent discrete inductances, capacitors and also primary and dual conductors. Alternatively, they can be viewed as respectively masses, spring stiness, primary and dual dampers of a mechanical string. Reordering variables would bring (63) into tridiagonal form, so from the spectral measure given by (62 ) the coecients of (63) can be obtained via a non-symmetric Lanczos algorithm written in J-symmetric form and fn(s) can be equivalently computed as fn(s) = u1. The cases considered in the original FDGQR correspond to either (i) real y, θ or (ii) real y and imaginary θ. Both cases are covered by the Stieltjes theorem, that yields in case (i) real positive h, hˆ and trivial r, rˆ, and in case (ii) real positive h,r and trivial hˆ,rˆ. This result allowed us a simple interpretation of (62) as the staggered nite-dierence approximation of the underlying PDE problem [2]. For PDEs in more than one variables (including topologically rich data-manifolds), a nite-dierence interpretation is obtained via a MIMO extensions in block form, e.g., [4, 3]. The main diculty of extending this approach to general passive problems is that the Stieltjes theory is no longer applicable. Moreover, the tridiagonal realization of a passive ROM transfer function (62) via the ladder network (63) cannot always be obtained in port-Hamiltonian form, i.e., the equivalent primary and dual conductors may change sign [1]. 100 Embedding of the Stieltjes problems, e.g., the case (i) was done by mapping h and hˆ into values of acoustic (or electromagnetic) impedance at grid cells, that required a special coordinate stretching (known as travel time coordinate transform) for continuous problems. Likewise, to circumvent possible non-positivity of conductors for the non-Stieltjes case, we introduce an additional complex s-dependent coordinate stretching, vanishing as s → ∞ [1]. This stretching applied in the discrete setting induces a diagonal factorization, removes oscillating coecients, and leads to an accurate embedding for moderate variations of the coecients of the continuum problems, i.e., it maps discrete coecients onto the values of their continuum counterparts. Not only does this embedding yields an approximate linear algebraic algorithm for the solution of the inverse problems for dissipative PDEs, it also leads to new insight into the properties of their ROM realizations. We will also discuss another approach to embedding, based on Krein-Nudelman theory [5], that results in special data-driven adaptive grids. References [1] Borcea, Liliana and Druskin, Vladimir and Zimmerling, Jörn, A reduced order model approach to inverse scattering in lossy layered media, Journal of Scientic Computing, V. 89, N1, pp. 136,2021 [2] Druskin, Vladimir and Knizhnerman, Leonid, Gaussian spectral rules for the three-point second dierences: I. A two-point positive denite problem in a semi-innite domain, SIAM Journal on Numerical Analysis, V. 37, N 2, pp.403422, 1999 [3] Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Distance preserving model order reduction of graph-Laplacians and cluster analysis, Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Journal of Scientic Computing, V. 90, N 1, pp 130, 2022 [4] Druskin, Vladimir and Moskow, Shari and Zaslavsky, Mikhail LippmannSchwingerLanczos algorithm for inverse scattering problems, Inverse Problems, V. 37, N. 7, 2021, [5] Mark Adolfovich Nudelman The Krein String and Characteristic Functions of Maximal Dissipative Operators, Journal of Mathematical Sciences, 2004, V 124, pp 49184934 Go back to Plenary Speakers Go back to Speakers Go back 
    more » « less
  3. The creation and manipulation of quantum entanglement is central to improving precision measurements. A principal method of generating entanglement for use in atom interferometry is the process of spin squeezing whereupon the states become more sensitive to SU(2) rotations. One possibility to generate this entanglement is provided by one-axis twisting (OAT), where a many-particle entangled state of one degree of freedom is generated by a non-linear Hamiltonian. We introduce a novel method which goes beyond OAT to create squeezing and entanglement across two distinct degrees of freedom. We present our work in the specific physical context of a system consisting of collective atomic energy levels and discrete collective momentum states, but also consider other possible realizations. Our system uses a nonlinear Hamiltonian to generate dynamics in SU(4), thereby creating the opportunity for dynamics not possible in typical SU(2) one-axis twisting. This leads to three axes undergoing twisting due to the two degrees of freedom and their entanglement, with the resulting potential for a more rich context of quantum entanglement. The states prepared in this system are potentially more versatile for use in multi-parameter or auxiliary measurement schemes than those prepared by standard spin squeezing. 
    more » « less
  4. A bstract Non-simply connected Calabi-Yau threefolds play a central role in the study of string compactifications. Such manifolds are usually described by quotienting a simply connected Calabi-Yau variety by a freely acting discrete symmetry. For the Calabi-Yau threefolds described as complete intersections in products of projective spaces, a classification of such symmetries descending from linear actions on the ambient spaces of the varieties has been given in [16]. However, which symmetries can be described in this manner depends upon the description that is being used to represent the manifold. In [24] new, favorable, descriptions were given of this data set of Calabi-Yau threefolds. In this paper, we perform a classification of cyclic symmetries that descend from linear actions on the ambient spaces of these new favorable descriptions. We present a list of 129 symmetries/non-simply connected Calabi-Yau threefolds. Of these, at least 33, and potentially many more, are topologically new varieties. 
    more » « less
  5. Lifted inference algorithms exploit model symmetry to reduce computational cost in probabilistic inference. However, most existing lifted inference algorithms operate only over discrete domains or continuous domains with restricted potential functions. We investigate two approximate lifted variational approaches that apply to domains with general hybrid potentials, and are expressive enough to capture multi-modality. We demonstrate that the proposed variational methods are highly scalable and can exploit approximate model symmetries even in the presence of a large amount of continuous evidence, outperforming existing message-passing-based approaches in a variety of settings. Additionally, we present a sufficient condition for the Bethe variational approximation to yield a non-trivial estimate over the marginal polytope.

     
    more » « less