skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dark matter from axion strings with adaptive mesh refinement
Abstract Axions are hypothetical particles that may explain the observed dark matter density and the non-observation of a neutron electric dipole moment. An increasing number of axion laboratory searches are underway worldwide, but these efforts are made difficult by the fact that the axion mass is largely unconstrained. If the axion is generated after inflation there is a unique mass that gives rise to the observed dark matter abundance; due to nonlinearities and topological defects known as strings, computing this mass accurately has been a challenge for four decades. Recent works, making use of large static lattice simulations, have led to largely disparate predictions for the axion mass, spanning the range from 25 microelectronvolts to over 500 microelectronvolts. In this work we show that adaptive mesh refinement simulations are better suited for axion cosmology than the previously-used static lattice simulations because only the string cores require high spatial resolution. Using dedicated adaptive mesh refinement simulations we obtain an over three order of magnitude leap in dynamic range and provide evidence that axion strings radiate their energy with a scale-invariant spectrum, to within ~5% precision, leading to a mass prediction in the range (40,180) microelectronvolts.  more » « less
Award ID(s):
1914480
PAR ID:
10345733
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract Adding an axion-like particle (ALP) to the Standard Model, with a field velocity in the early universe, simultaneously explains the observed baryon and dark matter densities. This requires one or more couplings between the ALP and photons, nucleons, and/or electrons that are predicted as functions of the ALP mass. These predictions arise because the ratio of dark matter to baryon densities is independent of the ALP field velocity, allowing a correlation between the ALP mass, m a , and decay constant, f a . The predicted couplings are orders of magnitude larger than those for the QCD axion and for dark matter from the conventional ALP misalignment mechanism. As a result, this scheme, ALP cogenesis, is within reach of future experimental ALP searches from the lab and stellar objects, and for dark matter. 
    more » « less
  2. A<sc>bstract</sc> We propose a relaxation mechanism for the initial misalignment angle of the pre-inflationary QCD axion with a large decay constant. The proposal addresses the challenges posed to the axion dark matter scenario by an overabundance of axions overclosing the Universe, as well as by isocurvature constraints. Many state-of-the-art experiments are searching for QCD axion dark matter with a decay constant as large as 1016GeV, motivating the need for a theoretical framework such as ours. In our model, hidden sector magnetic monopoles generated in the early Universe give the axion a large mass via the Witten effect, causing early oscillations that reduce the misalignment angle and axion abundance. As the hidden gauge symmetry breaks, its monopoles confine via cosmic strings, dissipating energy into the Standard Model and leading to monopole-antimonopole annihilation. This removes the monopole-induced mass, leaving only the standard QCD term. We consider the symmetry breaking pattern of SU(2)→ U(1)→ 1, leading to monopole and string formation respectively. We calculate the monopole abundance, their interactions with the axion field, and the necessary conditions for monopole-induced axion oscillations, while accounting for UV instanton effects. We present three model variations based on different symmetry breaking scales and show that they can accommodate an axion decay constant of up to 1016GeV with an inflationary scale of 1015GeV. The required alignment between monopole-induced and QCD axion potentials is achieved through a modest Nelson-Barr mechanism, avoiding overclosure without anthropic reasoning. 
    more » « less
  3. A<sc>bstract</sc> It is difficult to construct a post-inflation QCD axion model that solves the axion quality problem (and hence the Strong CP problem) without introducing a cosmological disaster. In a post-inflation axion model, the axion field value is randomized during the Peccei-Quinn phase transition, and axion domain walls form at the QCD phase transition. We emphasize that the gauge equivalence of all minima of the axion potential (i.e., domain wall number equals one) is insufficient to solve the cosmological domain wall problem. The axion string on which a domain wall ends must exist as an individual object (as opposed to a multi-string state), and it must be produced in the early universe. These conditions are often not satisfied in concrete models. Post-inflation axion models also face a potential problem from fractionally charged relics; solving this problem often leads to low-energy Landau poles for Standard Model gauge couplings, reintroducing the quality problem. We study several examples, finding that models that solve the quality problem face cosmological problems, and vice versa. This is not a no-go theorem; nonetheless, we argue that it is much more difficult than generally appreciated to find a viable post-inflation QCD axion model. Successful examples may have a nonstandard cosmological history (e.g., multiple types of cosmic axion strings of different tensions), undermining the widespread expectation that the post-inflation QCD axion scenario predicts a unique mass for axion dark matter. 
    more » « less
  4. Abstract Galaxies and their dark-matter halos are commonly presupposed to spin. But it is an open question how this spin manifests in halos and soliton cores made of scalar dark matter (SDM, including fuzzy/wave/ultralight-axion dark matter). One way spin could manifest in a necessarily irrotational SDM velocity field is with a vortex. But recent results have cast doubt on this scenario, finding that vortices are generally unstable except with substantial repulsive self-interaction. In this paper, we introduce an alternative route to stability: in both (non-relativistic) analytic calculations and simulations, a black hole or other central mass at least as massive as a soliton can stabilize a vortex within it. This conclusion may also apply to AU-scale halos bound to the sun and stellar-mass-scale Bose stars. 
    more » « less
  5. A bstract We propose a baryogenenesis mechanism that uses a rotating condensate of a Peccei-Quinn (PQ) symmetry breaking field and the dimension-five operator that gives Majorana neutrino masses. The rotation induces charge asymmetries for the Higgs boson and for lepton chirality through sphaleron processes and Yukawa interactions. The dimension-five interaction transfers these asymmetries to the lepton asymmetry, which in turn is transferred into the baryon asymmetry through the electroweak sphaleron process. QCD axion dark matter can be simultaneously produced by dynamics of the same PQ field via kinetic misalignment or parametric resonance, favoring an axion decay constant f a ≲ 10 10 GeV, or by conventional misalignment and contributions from strings and domain walls with f a ∼ 10 11 GeV. The size of the baryon asymmetry is tied to the mass of the PQ field. In simple supersymmetric theories, it is independent of UV parameters and predicts the supersymmtry breaking mass scale to be $$ \mathcal{O} $$ O (10 − 10 4 ) TeV, depending on the masses of the neutrinos and whether the condensate is thermalized during a radiation or matter dominated era. The high supersymmetry breaking mass scale may be free from cosmological and flavor/CP problems. We also construct a theory where TeV scale supersymmetry is possible. Parametric resonance may give warm axions, and the radial component of the PQ field may give signals in rare kaon decays from mixing with the Higgs and in dark radiation. 
    more » « less