- Award ID(s):
- 2121621
- Publication Date:
- NSF-PAR ID:
- 10345966
- Journal Name:
- American Geophysical Union annual meeting
- Volume:
- 2021
- Issue:
- H42D--04
- Sponsoring Org:
- National Science Foundation
More Like this
-
The concurrent reduction in acid deposition and increase in precipitation impact stream solute dynamics in complex ways that make predictions of future water quality difficult. To understand how changes in acid deposition and precipitation have influenced dissolved organic carbon (DOC) and nitrogen (N) loading to streams, we investigated trends from 1991 to 2018 in stream concentrations (DOC, ~3,800 measurements), dissolved organic nitrogen (DON, ~1,160 measurements), and dissolved inorganic N (DIN, ~2,130 measurements) in a forested watershed in Vermont, USA. Our analysis included concentration-discharge (C-Q) relationships and Seasonal Mann-Kendall tests on long-term, flow-adjusted concentrations. To understand whether hydrologic flushing and changes in acid deposition influenced long-term patterns by liberating DOC and dissolved N from watershed soils, we measured their concentrations in the leachate of 108 topsoil cores of 5 cm diameter that we flushed with solutions simulating high and low acid deposition during four different seasons. Our results indicate that DOC and DON often co-varied in both the long-term stream dataset and the soil core experiment. Additionally, leachate from winter soil cores produced especially high concentrations of all three solutes. This seasonal signal was consistent with C-Q relation showing that organic materials (e.g., DOC and DON), which accumulate during winter, aremore »
-
Soil biota generate CO2 that can vertically export to the atmosphere, and dissolved organic and inorganic carbon (DOC and DIC) that can laterally export to streams and accelerate weathering. These processes are regulated by external hydroclimate forcing and internal structures (permeability distribution), the relative influences of which are rarely studied. Understanding these interactions is essential a hydrological extremes intensify in the future. Here we explore the question: How and to what extent do hydrological and permeability distribution conditions regulate soil carbon transformations and chemical weathering? We address the questions using a hillslope reactive transport model constrained by data from the Fitch Forest (Kansas, United States). Numerical experiments were used to mimic hydrological extremes and variable shallow-versus-deep permeability contrasts. Results demonstrate that under dry conditions (0.08 mm/day), long water transit times led to more mineralization of organic carbon (OC) into inorganic carbon (IC) form (>98\%). Of the IC produced, ~ 75\% was emitted upward as CO2 gas and ~ 25\% was exported laterally as DIC into the stream. Wet conditions (8.0 mm/day) resulted in less mineralization (~88\%), more DOC production (~12\%), and more lateral fluxes of IC (~50\% of produced IC). Carbonate precipitated under dry conditions and dissolved under wet conditionsmore »
-
Abstract The contributions and composition of baseflow sources across an extended recession period were quantified for six subwatersheds of varying size in a structurally complex watershed in coastal California using endmember mixing analysis and related to catchment characteristics (e.g., topography, geology, land use, and soil characteristics). Both shallow subsurface and deep groundwater reservoirs were important contributors for streamflow during low flow periods, and the composition of baseflow sources across subwatersheds was directly related to geologic indices. A binary classification of underlying bedrock permeability (e.g., low vs. high) best explained the changes in shallow subsurface water and deeper groundwater inputs through the seasonal recession. Dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and specific UV absorbance at 254 nm (SUVA254) were used to provide additional insight into endmember characteristics and their contributions to baseflow. Stream water DIC concentrations were broadly controlled by mixing of groundwater and shallow subsurface water endmembers with relatively constant DIC concentrations, while stream water DOC concentrations reflected both spatial and temporal changes in shallow subsurface water DOC. Results from this study show (1) the importance of considering baseflow as a dynamic mixture of water from multiple sources, (2) the effect of geology on source composition at the subwatershedmore »
-
Abstract The evasion of CO2from inland waters, a major carbon source to the atmosphere, depends on dissolved inorganic carbon (DIC) concentrations. Our understanding of DIC dynamics across gradients of climate, geology, and vegetation conditions however have remained elusive. To understand its large‐scale patterns and drivers, we collated instantaneous and mean (multiyear average) DIC concentrations from about 100 rivers draining minimally‐impacted watersheds in the contiguous United States. Within individual sites, instantaneous concentrations (
C ) measured at daily to seasonal scales exhibit a near‐universal response to changes in river discharge (Q ) in a negative power law form. High concentrations occur at low discharge when DIC‐enriched groundwater dominates river discharge; low concentrations occur under high flow when relatively DIC‐poor shallow soil water predominates river discharge. Such patterns echo the widely observed increase of soil CO2and DIC with depth and the shallow‐and‐deep hypothesis that emphasizes the importance of flow paths and source water chemistry. Across sites, mean concentrations (C m ) decrease with increasing mean discharge (Q m ), a long‐term climate measure, and reachs maxima at around 200 mm/yr. A parsimonious model reveals that high mean DIC arises from soil CO2accumulation when rates of DIC‐generating reactions are relatively high compared to its export fluxes in arid climates. Although instantaneous and meanmore » -
Abstract. Watersheds are the fundamental Earth surface functioning units that connect the land to aquatic systems. Many watershed-scale models represent hydrological processes but not biogeochemical reactive transport processes. This has limited our capability to understand and predict solute export, water chemistry and quality, and Earth system response to changing climate and anthropogenic conditions. Here we present a recently developed BioRT-Flux-PIHM (BioRT hereafter) v1.0, a watershed-scale biogeochemical reactive transport model. The model augments the previously developed RT-Flux-PIHM that integrates land-surface interactions, surface hydrology, and abiotic geochemical reactions. It enables the simulation of (1) shallow and deep-water partitioning to represent surface runoff, shallow soil water, and deeper groundwater and of (2) biotic processes including plant uptake, soil respiration, and nutrient transformation. The reactive transport part of the code has been verified against the widely used reactive transport code CrunchTope. BioRT-Flux-PIHM v1.0 has recently been applied in multiple watersheds under diverse climate, vegetation, and geological conditions. This paper briefly introduces the governing equations and model structure with a focus on new aspects of the model. It also showcases one hydrology example that simulates shallow and deep-water interactions and two biogeochemical examples relevant to nitrate and dissolved organic carbon (DOC). These examples are illustrated in twomore »