skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extending Our Scientific Reach in Arboreal Ecosystems for Research and Management
The arboreal ecosystem is vitally important to global and local biogeochemical processes, the maintenance of biodiversity in natural systems, and human health in urban environments. The ability to collect samples, observations, and data to conduct meaningful scientific research is similarly vital. The primary methods and modes of access remain limited and difficult. In an online survey, canopy researchers ( n = 219) reported a range of challenges in obtaining adequate samples, including ∼10% who found it impossible to procure what they needed. Currently, these samples are collected using a combination of four primary methods: (1) sampling from the ground; (2) tree climbing; (3) constructing fixed infrastructure; and (4) using mobile aerial platforms, primarily rotorcraft drones. An important distinction between instantaneous and continuous sampling was identified, allowing more targeted engineering and development strategies. The combination of methods for sampling the arboreal ecosystem provides a range of possibilities and opportunities, particularly in the context of the rapid development of robotics and other engineering advances. In this study, we aim to identify the strategies that would provide the benefits to a broad range of scientists, arborists, and professional climbers and facilitate basic discovery and applied management. Priorities for advancing these efforts are (1) to expand participation, both geographically and professionally; (2) to define 2–3 common needs across the community; (3) to form and motivate focal teams of biologists, tree professionals, and engineers in the development of solutions to these needs; and (4) to establish multidisciplinary communication platforms to share information about innovations and opportunities for studying arboreal ecosystems.  more » « less
Award ID(s):
1724433
PAR ID:
10346054
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Frontiers in Forests and Global Change
Volume:
4
ISSN:
2624-893X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In tropical rain forests, the ant community can be divided into ground and arboreal faunas. Here, we report a thorough sampling of the arboreal ant fauna of La Selva Biological Station, a Neotropical rain forest site. Forty‐five canopy fogging samples were centered around large trees. Individual samples harbored an average of 35 ant species, with up to 55 species in a single sample. The fogging samples yielded 163 observed species total, out of a statistically estimated 199 species. We found no relationship between within‐sample ant richness and focal tree species, nor were the ant faunas of nearby trees more similar to each other than the faunas of widely spaced trees. Species density was high, and beta diversity was low: A single column of vegetation typically harbors at least a fifth of the entire arboreal ant fauna. Considering the entire fauna, based on 23,326 species occurrence records using a wide variety of collecting methods, 182 of 539 observed species (196 of 605, estimated statistically) were entirely arboreal. The arboreal ant fauna is thus about a third of the total La Selva ant fauna, a robust result because inventory completeness was similar for ground and arboreal ants. The taxonomic history of discovery of the species that make up the La Selva fauna reveals no disproportionately large pool of undiscovered ant species in the canopy. The last biotic frontier for tropical ants has been the rotten wood, leaf litter, and soil of the forest floor. Abstract in Spanish is available with online material. 
    more » « less
  2. Engineers have the power to drive innovation and rethink the way the world is designed. However, a key practice often absent from engineering education is facilitating innovation and considering diverse perspectives through divergent thinking. We define divergence in engineering practices as exploring multiple alternatives in any stage of engineering processes. Currently, engineering education and research focuses on divergence primarily in the generation and development of design solutions, supported by idea generation methods such as Brainstorming and Design Heuristics. But in practice, there are many other opportunities throughout an engineering project where engineers may find it useful to explore multiple alternatives. When does divergent thinking take place during engineering problem solving as it is currently practiced? We conducted 90-minute semi-structured interviews with mechanical engineering practitioners working in varied setting to elicit their experiences with divergent thinking taking place in their engineering projects. The initial results document divergent thinking in six different areas of engineering design processes: 1) problem understanding, 2) problem-solving methods and strategies, 3) research and information gathering, 4) stakeholder identification, 5) considering potential solutions, and 6) anticipating implications of decisions. These findings suggest engineers find divergent thinking useful in multiple areas of engineering practice, and we suggest goals for developing divergent thinking skills in engineering education. 
    more » « less
  3. Experts in human factors and ergonomics (HF/E) and related fields have the ability and responsibility to broadly serve  the needs and goals of diverse people, which encompasses issues of inclusion, equity, and justice. Importantly, HF/E designers, researchers, and practitioners can address these aims both as the intended outcomes of their work and how the work itself is conducted. Both pathways support progress toward more inclusive and equitable organizations and societies. This paper focuses upon one aspect of inclusive methodology—strategies for inclusive sampling. Sampling is an important focus because of its fundamental role in defining the internal and external validity of findings. Moreover, sampling is how diverse participants and perspectives are incorporated (or not), and thus represents an early way that exclusion, inequity, or inaccessibility may manifest. Three heuristic questions and six sets of strategies are briefly articulated: (1) purposive sampling, (2) oversampling, (3) community sampling, (4) removing barriers of distance, cost, communication, and awareness, (5) building trust, and (6) inclusive demographic categories. A variety of sources are cited to facilitate readers’ further consideration of these issues in their own HF/E endeavors. 
    more » « less
  4. A descriptive phenomenological research design using a socialization theoretical framework is employed to describe the lived experience of socialization and its influence in the career pathways of 16 engineering postdoctoral scholars. Descriptive phenomenological data analysis strategies resulted in four constituents regarding effective postdoctoral socialization: (1) academic identity is nurtured, (2) disciplinary belonging is reinforced, (3) scholarly performance is strengthened, and (4) career development is essential for pursuing the professoriate. The essential structure was conceptualized as follows: Effective socialization of engineering postdoctoral scholars includes the enhancement of their academic identity, disciplinary belonging, and scholarly performance, as well as attention to the career development needs of those aspiring to be a professor. These findings shed light on the importance of the supervisor-supervisee relationship in the socialization process and the role of supervisors in shaping postdoctoral scholars’ career trajectories. 
    more » « less
  5. The purpose of the Research in the Formation of Engineers National Science Foundation funded project, Developing Engineering Experiences and Pathways in Engineering Technology Career Formation (D.E.E.P. Engineering Technology Career Formation), is to develop a greater understanding of the professional identity, institutional culture, and formation of engineer technicians and technologists (ET) who are prepared at two-year colleges. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. Little research on career development and the role of ET in the workforce has previously been conducted prompting national organizations such as NSF and the National Academy of Sciences to prompt more research in this area [1]. The primary objectives of this project are to: (a) identify dimensions of career orientations and anchors at various stages of professional preparation and map to ET career pathways, (b) develop an empirical framework, incorporating individual career anchors and effect of institutional culture, for understanding ET professional formation, and (c) develop and pilot interventions aimed at transforming engineering formation systems in ET contexts. The three interdisciplinary theoretical frameworks integrated to guide design and analysis of this research study are social cognitive career theory (SCCT) [2], Schein’s career anchors which focuses on individual career orientation [3], and the Hughes value framework focused on the organization [4]. SCCT which links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes ties the individual career anchors to the institutional context of the Hughes framework [2]. To date, the project has collected and analyzed quantitative data from over 330 participants who are two-year college ET students, two-year college transfer students, and early career ET professionals. Qualitative data from historical institutional documents has also been collected and analyzed. Initial analyses have revealed gaps and needed areas of support for ET students in the area of professional formation. Thus far, the identified gaps are in institutional policy (i.e. lack of articulation agreements), needed faculty professional development (i.e. two-year faculty on specific career development and professional ET formation needs and four-year faculty on unique needs of transfer students), missing curriculum and resources supporting career development and professional formation of ET students, and integration of transfer student services focusing on connecting faculty and advisors across both institutional levels and types of programs. Significant gaps in the research promoting understanding of the role of ET and unique professional formation needs of these students were also confirmed. This project has been successful at helping to broaden participation in ET engineering education through integrating new participants into activities (new four-year institutional stakeholders, new industry partners, new faculty and staff directly and indirectly working with ET students) and through promoting disciplinary (engineering education and ET) and cross disciplinary collaborations (human resource development, higher education leadership, and student affairs). With one year remaining before completion of this project, this project has promoted a better understanding of student and faculty barriers supporting career development for ET students and identified need for career development resources and curriculum in ET. Words: 498 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [3] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [4] Hughes, C. (2014, Spring). Conceptualizing the five values of people and technology development: Implications for human resource managmeent and development. Workforce Education Forum, 37(1), 23-44. 
    more » « less