skip to main content


Title: Invertibility aware Integration of Static and Time-series data: An application to Lake Temperature Modeling. (2022 SDM Best Paper Award)
Accurate predictions of water temperature are the foundation for many decisions and regulations, with direct impacts on water quality, fishery yields, and power production. Building accurate broad-scale models for lake temperature prediction remains challenging in practice due to the variability in the data distribution across different lake systems monitored by static and time-series data. In this paper, to tackle the above challenges, we propose a novel machine learning based approach for integrating static and time-series data in deep recurrent models, which we call Invertibility-Aware-Long Short-Term Memory(IA-LSTM), and demonstrate its effectiveness in predicting lake temperature. Our proposed method integrates components of the Invertible Network and LSTM to better predict temperature profiles (forward modeling) and infer the static features (i.e., inverse modeling) that can eventually enhance the prediction when static variables are missing. We evaluate our method on predicting the temperature profile of 450 lakes in the Midwestern U.S. and report a relative improvement of 4\% to capture data heterogeneity and simultaneously outperform baseline predictions by 12\% when static features are unavailable.  more » « less
Award ID(s):
1934721
NSF-PAR ID:
10346151
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
SIAM
Date Published:
Journal Name:
2022 SIAM International Conference on Data Mining (SDM)
ISSN:
2167-0102
Page Range / eLocation ID:
702 - 710
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Streamflow prediction plays a vital role in water resources planning in order to understand the dramatic change of climatic and hydrologic variables over different time scales. In this study, we used machine learning (ML)-based prediction models, including Random Forest Regression (RFR), Long Short-Term Memory (LSTM), Seasonal Auto- Regressive Integrated Moving Average (SARIMA), and Facebook Prophet (PROPHET) to predict 24 months ahead of natural streamflow at the Lees Ferry site located at the bottom part of the Upper Colorado River Basin (UCRB) of the US. Firstly, we used only historic streamflow data to predict 24 months ahead. Secondly, we considered meteorological components such as temperature and precipitation as additional features. We tested the models on a monthly test dataset spanning 6 years, where 24-month predictions were repeated 50 times to ensure the consistency of the results. Moreover, we performed a sensitivity analysis to identify our best-performing model. Later, we analyzed the effects of considering different span window sizes on the quality of predictions made by our best model. Finally, we applied our best-performing model, RFR, on two more rivers in different states in the UCRB to test the model’s generalizability. We evaluated the performance of the predictive models using multiple evaluation measures. The predictions in multivariate time-series models were found to be more accurate, with RMSE less than 0.84 mm per month, R-squared more than 0.8, and MAPE less than 0.25. Therefore, we conclude that the temperature and precipitation of the UCRB increases the accuracy of the predictions. Ultimately, we found that multivariate RFR performs the best among four models and is generalizable to other rivers in the UCRB. 
    more » « less
  2. Machine and deep learning-based algorithms are the emerging approaches in addressing prediction problems in time series. These techniques have been shown to produce more accurate results than conventional regression-based modeling. It has been reported that artificial Recurrent Neural Networks (RNN) with memory, such as Long Short-Term Memory (LSTM), are superior compared to Autoregressive Integrated Moving Average (ARIMA) with a large margin. The LSTM-based models incorporate additional “gates” for the purpose of memorizing longer sequences of input data. The major question is that whether the gates incorporated in the LSTM architecture already offers a good prediction and whether additional training of data would be necessary to further improve the prediction. Bidirectional LSTMs (BiLSTMs) enable additional training by traversing the input data twice (i.e., 1) left-to-right, and 2) right-to-left). The research question of interest is then whether BiLSTM, with additional training capability, outperforms regular unidirectional LSTM. This paper reports a behavioral analysis and comparison of BiLSTM and LSTM models. The objective is to explore to what extend additional layers of training of data would be beneficial to tune the involved parameters. The results show that additional training of data and thus BiLSTM-based modeling offers better predictions than regular LSTM-based models. More specifically, it was observed that BiLSTM models provide better predictions compared to ARIMA and LSTM models. It was also observed that BiLSTM models reach the equilibrium much slower than LSTM-based models. 
    more » « less
  3. null (Ed.)
    Basin-centric long short-term memory (LSTM) network models have recently been shown to be an exceptionally powerful tool for stream temperature (Ts) temporal prediction (training in one period and making predictions for another period at the same sites). However, spatial extrapolation is a well-known challenge to modeling Ts and it is uncertain how an LSTM-based daily Ts model will perform in unmonitored or dammed basins. Here we compiled a new benchmark dataset consisting of >400 basins across the contiguous United States in different data availability groups (DAG, meaning the daily sampling frequency) with or without major dams and studied how to assemble suitable training datasets for predictions in basins with or without temperature monitoring. For prediction in unmonitored basins (PUB), LSTM produced an RMSE of 1.129 °C and R2 of 0.983. While these metrics declined from LSTM's temporal prediction performance, they far surpassed traditional models' PUB values, and were competitive with traditional models' temporal prediction on calibrated sites. Even for unmonitored basins with major reservoirs, we obtained a median RMSE of 1.202°C and an R2 of 0.984. For temporal prediction, the most suitable training set was the matching DAG that the basin could be grouped into, e.g., the 60% DAG for a basin with 61% data availability. However, for PUB, a training dataset including all basins with data is consistently preferred. An input-selection ensemble moderately mitigated attribute overfitting. Our results indicate there are influential latent processes not sufficiently described by the inputs (e.g., geology, wetland covers), but temporal fluctuations are well predictable, and LSTM appears to be a highly accurate Ts modeling tool even for spatial extrapolation. 
    more » « less
  4. Many coastal cities are facing frequent flooding from storm events that are made worse by sea level rise and climate change. The groundwater table level in these low relief coastal cities is an important, but often overlooked, factor in the recurrent flooding these locations face. Infiltration of stormwater and water intrusion due to tidal forcing can cause already shallow groundwater tables to quickly rise toward the land surface. This decreases available storage which increases runoff, stormwater system loads, and flooding. Groundwater table forecasts, which could help inform the modeling and management of coastal flooding, are generally unavailable. This study explores two machine learning models, Long Short-term Memory (LSTM) networks and Recurrent Neural Networks (RNN), to model and forecast groundwater table response to storm events in the flood prone coastal city of Norfolk, Virginia. To determine the effect of training data type on model accuracy, two types of datasets (i) the continuous time series and (ii) a dataset of only storm events, created from observed groundwater table, rainfall, and sea level data from 2010–2018 are used to train and test the models. Additionally, a real-time groundwater table forecasting scenario was carried out to compare the models’ abilities to predict groundwater table levels given forecast rainfall and sea level as input data. When modeling the groundwater table with observed data, LSTM networks were found to have more predictive skill than RNNs (root mean squared error (RMSE) of 0.09 m versus 0.14 m, respectively). The real-time forecast scenario showed that models trained only on storm event data outperformed models trained on the continuous time series data (RMSE of 0.07 m versus 0.66 m, respectively) and that LSTM outperformed RNN models. Because models trained with the continuous time series data had much higher RMSE values, they were not suitable for predicting the groundwater table in the real-time scenario when using forecast input data. These results demonstrate the first use of LSTM networks to create hourly forecasts of groundwater table in a coastal city and show they are well suited for creating operational forecasts in real-time. As groundwater table levels increase due to sea level rise, forecasts of groundwater table will become an increasingly valuable part of coastal flood modeling and management. 
    more » « less
  5. Abstract The physical processes of heat exchange between lakes and the surrounding atmosphere are important in simulating and predicting terrestrial surface energy balance. Latent and sensible heat fluxes are the dominant physical process controlling ice growth and decay on the lake surface, as well as having influence on regional climate. While one-dimensional lake models have been used in simulating environmental changes in ice dynamics and water temperature, understanding the seasonal to daily cycles of lake surface energy balance and its relationship to lake thermal properties, atmospheric conditions, and how those are represented in models is still an open area of research. We evaluated a pair of one-dimensional lake models, Freshwater Lake (FLake) and the General Lake Model (GLM), to compare modeled latent and sensible heat fluxes against observed data collected by an eddy covariance tower during a 1-yr period in 2017, using Lake Mendota in Madison, Wisconsin, as our study site. We hypothesized transitional periods of ice cover as a leading source of model uncertainty, and we instead found that the models failed to simulate accurate values for large positive heat fluxes that occurred from late August into late December. Our results ultimately showed that one-dimensional models are effective in simulating sensible heat fluxes but are considerably less sensitive to latent heat fluxes than the observed relationships of latent heat flux to environmental drivers. These results can be used to focus future improvement of these lake models especially if they are to be used for surface boundary conditions in regional numerical weather models. Significance Statement While lakes consist of a small amount of Earth’s surface, they have a large impact on local climate and weather. A large amount of energy is stored in lakes during the spring and summer, and then removed from lakes before winter. The effect is particularly noticeable in high latitudes, when the seasonal temperature difference is larger. Modeling this lake energy exchange is important for weather models and measuring this energy exchange is challenging. Here we compare modeled and observed energy exchange, and we show there are large amounts of energy exchange happening in the fall, which models struggle to capture well. During periods of partial ice coverage in early winter, lake behavior can change rapidly. 
    more » « less