- Award ID(s):
- 2009234
- Publication Date:
- NSF-PAR ID:
- 10346176
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 513
- Issue:
- 1
- Page Range or eLocation-ID:
- 282 to 295
- ISSN:
- 0035-8711
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT We argue that charged dust grains could significantly impact the confinement and transport of galactic cosmic rays. For sub-GeV to ∼103 GeV cosmic rays, small-scale parallel Alfvén waves, which isotropize cosmic rays through gyro-resonant interactions, are also gyro-resonant with charged grains. If the dust is nearly stationary, as in the bulk of the interstellar medium, Alfvén waves are damped by dust. This will reduce the amplitude of Alfvén waves produced by the cosmic rays through the streaming instability, thus enhancing cosmic ray transport. In well-ionized regions, the dust damping rate is larger by a factor of ∼10 than other mechanisms that damp parallel Alfvén waves at the scales relevant for ∼GeV cosmic rays, suggesting that dust could play a key role in regulating cosmic ray transport. In astrophysical situations in which the dust moves through the gas with super-Alfvénic velocities, Alfvén waves are rendered unstable, which could directly scatter cosmic rays. This interaction has the potential to create a strong feedback mechanism where dust, driven through the gas by radiation pressure, then strongly enhances the confinement of cosmic rays, increasing their capacity to drive outflows. This mechanism may act in the circumgalactic medium around star-forming galaxies and active galactic nuclei.
-
ABSTRACT Recently, Squire & Hopkins showed that charged dust grains moving through magnetized gas under the influence of a uniform external force (such as radiation pressure or gravity) are subject to a spectrum of instabilities. Qualitatively distinct instability families are associated with different Alfvén or magnetosonic waves and drift or gyro motion. We present a suite of simulations exploring these instabilities, for grains in a homogeneous medium subject to an external acceleration. We vary parameters such as the ratio of Lorentz-to-drag forces on dust, plasma β, size scale, and acceleration. All regimes studied drive turbulent motions and dust-to-gas fluctuations in the saturated state, rapidly amplify magnetic fields into equipartition with velocity fluctuations, and produce instabilities that persist indefinitely (despite random grain motions). Different parameters produce diverse morphologies and qualitatively different features in dust, but the saturated gas state can be broadly characterized as anisotropic magnetosonic or Alfvénic turbulence. Quasi-linear theory can qualitatively predict the gas turbulent properties. Turbulence grows from small to large scales, and larger scale modes usually drive more vigorous gas turbulence, but dust velocity and density fluctuations are more complicated. In many regimes, dust forms structures (clumps, filaments, sheets) that reach extreme overdensities (up to ≫109 timesmore »
-
ABSTRACT We study the non-linear evolution of the acoustic ‘resonant drag instability’ (RDI) using numerical simulations. The acoustic RDI is excited in a dust–gas mixture when dust grains stream through gas, interacting with sound waves to cause a linear instability. We study this process in a periodic box by accelerating neutral dust with an external driving force. The instability grows as predicted by linear theory, eventually breaking into turbulence and saturating. As in linear theory, the non-linear behaviour is characterized by three regimes – high, intermediate, and low wavenumbers – the boundary between which is determined by the dust–gas coupling strength and the dust-to-gas mass ratio. The high and intermediate wavenumber regimes behave similarly to one another, with large dust-to-gas ratio fluctuations while the gas remains largely incompressible. The saturated state is highly anisotropic: dust is concentrated in filaments, jets, or plumes along the direction of acceleration, with turbulent vortex-like structures rapidly forming and dissipating in the perpendicular directions. The low-wavenumber regime exhibits large fluctuations in gas and dust density, but the dust and gas remain more strongly coupled in coherent ‘fronts’ perpendicular to the acceleration. These behaviours are qualitatively different from those of dust ‘passively’ driven by external hydrodynamicmore »
-
null (Ed.)ABSTRACT The microphysics of ∼ GeV cosmic ray (CR) transport on galactic scales remain deeply uncertain, with almost all studies adopting simple prescriptions (e.g. constant diffusivity). We explore different physically motivated, anisotropic, dynamical CR transport scalings in high-resolution cosmological Feedback In Realistic Environment (FIRE) simulations of dwarf and ∼L* galaxies where scattering rates vary with local plasma properties motivated by extrinsic turbulence (ET) or self-confinement (SC) scenarios, with varying assumptions about e.g. turbulent power spectra on un-resolved scales, Alfvén-wave damping, etc. We self-consistently predict observables including γ-rays (Lγ), grammage, residence times, and CR energy densities to constrain the models. We demonstrate many non-linear dynamical effects (not captured in simpler models) tend to enhance confinement. For example, in multiphase media, even allowing arbitrary fast transport in neutral gas does not substantially reduce CR residence times (or Lγ), as transport is rate-limited by the ionized WIM and ‘inner CGM’ gaseous halo (104–106 K gas within $\lesssim 10\!-\!30\,$ kpc), and Lγ can be dominated by trapping in small ‘patches’. Most physical ET models contribute negligible scattering of ∼1–10 GeV CRs, but it is crucial to account for anisotropy and damping (especially of fast modes) or else scattering rates would violate observations. We show that the most widelymore »
-
ABSTRACT We study the linear growth and non-linear saturation of the ‘acoustic Resonant Drag Instability’ (RDI) when the dust grains, which drive the instability, have a wide, continuous spectrum of different sizes. This physics is generally applicable to dusty winds driven by radiation pressure, such as occurs around red-giant stars, star-forming regions, or active galactic nuclei. Depending on the physical size of the grains compared to the wavelength of the radiation field that drives the wind, two qualitatively different regimes emerge. In the case of grains that are larger than the radiation’s wavelength – termed the constant-drift regime – the grain’s equilibrium drift velocity through the gas is approximately independent of grain size, leading to strong correlations between differently sized grains that persist well into the saturated non-linear turbulence. For grains that are smaller than the radiation’s wavelength – termed the non-constant-drift regime – the linear instability grows more slowly than the single-grain-size RDI and only the larger grains exhibit RDI-like behaviour in the saturated state. A detailed study of grain clumping and grain–grain collisions shows that outflows in the constant-drift regime may be effective sites for grain growth through collisions, with large collision rates but low collision velocities.