skip to main content


Title: Numerical study of cosmic ray confinement through dust resonant drag instabilities
ABSTRACT We investigate the possibility of cosmic ray (CR) confinement by charged dust grains through resonant drag instabilities (RDIs). We perform magnetohydrodynamic particle-in-cell simulations of magnetized gas mixed with charged dust and cosmic rays, with the gyro-radii of dust and GeV CRs on ∼au scales fully resolved. As a first study, we focus on one type of RDI wherein charged grains drift super-Alfvénically, with Lorentz forces strongly dominating over drag forces. Dust grains are unstable to the RDIs and form concentrated columns and sheets, whose scale grows until saturating at the simulation box size. Initially perfectly streaming CRs are strongly scattered by RDI-excited Alfvén waves, with the growth rate of the CR perpendicular velocity components equaling the growth rate of magnetic field perturbations. These rates are well-predicted by analytic linear theory. CRs finally become isotropized and drift at least at ∼vA by unidirectional Alfvén waves excited by the RDIs, with a uniform distribution of the pitch angle cosine μ and a flat profile of the CR pitch angle diffusion coefficient Dμμ around μ = 0, without the ‘90○ pitch angle problem.’ With CR feedback on the gas included, Dμμ decreases by a factor of a few, indicating a lower CR scattering rate, because the backreaction on the RDI from the CR pressure adds extra wave damping, leading to lower quasi-steady-state scattering rates. Our study demonstrates that the dust-induced CR confinement can be very important under certain conditions, e.g. the dusty circumgalactic medium around quasars or superluminous galaxies.  more » « less
Award ID(s):
2009234
NSF-PAR ID:
10346176
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
513
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
282 to 295
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We argue that charged dust grains could significantly impact the confinement and transport of galactic cosmic rays. For sub-GeV to ∼103 GeV cosmic rays, small-scale parallel Alfvén waves, which isotropize cosmic rays through gyro-resonant interactions, are also gyro-resonant with charged grains. If the dust is nearly stationary, as in the bulk of the interstellar medium, Alfvén waves are damped by dust. This will reduce the amplitude of Alfvén waves produced by the cosmic rays through the streaming instability, thus enhancing cosmic ray transport. In well-ionized regions, the dust damping rate is larger by a factor of ∼10 than other mechanisms that damp parallel Alfvén waves at the scales relevant for ∼GeV cosmic rays, suggesting that dust could play a key role in regulating cosmic ray transport. In astrophysical situations in which the dust moves through the gas with super-Alfvénic velocities, Alfvén waves are rendered unstable, which could directly scatter cosmic rays. This interaction has the potential to create a strong feedback mechanism where dust, driven through the gas by radiation pressure, then strongly enhances the confinement of cosmic rays, increasing their capacity to drive outflows. This mechanism may act in the circumgalactic medium around star-forming galaxies and active galactic nuclei. 
    more » « less
  2. null (Ed.)
    ABSTRACT Recently, Squire & Hopkins showed that charged dust grains moving through magnetized gas under the influence of a uniform external force (such as radiation pressure or gravity) are subject to a spectrum of instabilities. Qualitatively distinct instability families are associated with different Alfvén or magnetosonic waves and drift or gyro motion. We present a suite of simulations exploring these instabilities, for grains in a homogeneous medium subject to an external acceleration. We vary parameters such as the ratio of Lorentz-to-drag forces on dust, plasma β, size scale, and acceleration. All regimes studied drive turbulent motions and dust-to-gas fluctuations in the saturated state, rapidly amplify magnetic fields into equipartition with velocity fluctuations, and produce instabilities that persist indefinitely (despite random grain motions). Different parameters produce diverse morphologies and qualitatively different features in dust, but the saturated gas state can be broadly characterized as anisotropic magnetosonic or Alfvénic turbulence. Quasi-linear theory can qualitatively predict the gas turbulent properties. Turbulence grows from small to large scales, and larger scale modes usually drive more vigorous gas turbulence, but dust velocity and density fluctuations are more complicated. In many regimes, dust forms structures (clumps, filaments, sheets) that reach extreme overdensities (up to ≫109 times mean), and exhibit substantial substructure even in nearly incompressible gas. These can be even more prominent at lower dust-to-gas ratios. In other regimes, dust self-excites scattering via magnetic fluctuations that isotropize and amplify dust velocities, producing fast, diffusive dust motions. 
    more » « less
  3. ABSTRACT We study the non-linear evolution of the acoustic ‘resonant drag instability’ (RDI) using numerical simulations. The acoustic RDI is excited in a dust–gas mixture when dust grains stream through gas, interacting with sound waves to cause a linear instability. We study this process in a periodic box by accelerating neutral dust with an external driving force. The instability grows as predicted by linear theory, eventually breaking into turbulence and saturating. As in linear theory, the non-linear behaviour is characterized by three regimes – high, intermediate, and low wavenumbers – the boundary between which is determined by the dust–gas coupling strength and the dust-to-gas mass ratio. The high and intermediate wavenumber regimes behave similarly to one another, with large dust-to-gas ratio fluctuations while the gas remains largely incompressible. The saturated state is highly anisotropic: dust is concentrated in filaments, jets, or plumes along the direction of acceleration, with turbulent vortex-like structures rapidly forming and dissipating in the perpendicular directions. The low-wavenumber regime exhibits large fluctuations in gas and dust density, but the dust and gas remain more strongly coupled in coherent ‘fronts’ perpendicular to the acceleration. These behaviours are qualitatively different from those of dust ‘passively’ driven by external hydrodynamic turbulence, with no back-reaction force from dust on to gas. The virulent nature of these instabilities has interesting implications for dust-driven winds in a variety of astrophysical systems, including around cool stars, in dusty torii around active-galactic-nuclei, and in and around giant molecular clouds. 
    more » « less
  4. Abstract We study the propagation of mildly relativistic cosmic rays (CRs) in multiphase interstellar medium environments with conditions typical of nearby disk galaxies. We employ the techniques developed in Armillotta et al. to postprocess three high-resolution TIGRESS magnetohydrodynamic simulations modeling local patches of star-forming galactic disks. Together, the three simulations cover a wide range of gas surface density, gravitational potential, and star formation rate (SFR). Our prescription for CR propagation includes the effects of advection by the background gas, streaming along the magnetic field at the local ion Alfvén speed, and diffusion relative to the Alfvén waves, with the diffusion coefficient set by the balance between streaming-driven Alfvén wave excitation and damping mediated by local gas properties. We find that the combined transport processes are more effective in environments with higher SFR. These environments are characterized by higher-velocity hot outflows (created by clustered supernovae) that rapidly advect CRs away from the galactic plane. As a consequence, the ratio of midplane CR pressure to midplane gas pressures decreases with increasing SFR. We also use the postprocessed simulations to make predictions regarding the potential dynamical impacts of CRs. The relatively flat CR pressure profiles near the midplane argue that they would not provide significant support against gravity for most of the ISM mass. However, the CR pressure gradients are larger than the other pressure gradients in the extraplanar region (∣ z ∣ > 0.5 kpc), suggesting that CRs may affect the dynamics of galactic fountains and/or winds. The degree of this impact is expected to increase in environments with lower SFR. 
    more » « less
  5. null (Ed.)
    ABSTRACT The microphysics of ∼ GeV cosmic ray (CR) transport on galactic scales remain deeply uncertain, with almost all studies adopting simple prescriptions (e.g. constant diffusivity). We explore different physically motivated, anisotropic, dynamical CR transport scalings in high-resolution cosmological Feedback In Realistic Environment (FIRE) simulations of dwarf and ∼L* galaxies where scattering rates vary with local plasma properties motivated by extrinsic turbulence (ET) or self-confinement (SC) scenarios, with varying assumptions about e.g. turbulent power spectra on un-resolved scales, Alfvén-wave damping, etc. We self-consistently predict observables including γ-rays (Lγ), grammage, residence times, and CR energy densities to constrain the models. We demonstrate many non-linear dynamical effects (not captured in simpler models) tend to enhance confinement. For example, in multiphase media, even allowing arbitrary fast transport in neutral gas does not substantially reduce CR residence times (or Lγ), as transport is rate-limited by the ionized WIM and ‘inner CGM’ gaseous halo (104–106 K gas within $\lesssim 10\!-\!30\,$ kpc), and Lγ can be dominated by trapping in small ‘patches’. Most physical ET models contribute negligible scattering of ∼1–10 GeV CRs, but it is crucial to account for anisotropy and damping (especially of fast modes) or else scattering rates would violate observations. We show that the most widely assumed scalings for SC models produce excessive confinement by factors ≳100 in the warm ionized medium (WIM) and inner CGM, where turbulent and Landau damping dominate. This suggests either a breakdown of quasi-linear theory used to derive the CR transport parameters in SC, or that other novel damping mechanisms dominate in intermediate-density ionized gas. 
    more » « less