skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Promoting shifts in teachers’ understanding and use of phenomena in instruction and assessment
This paper examines an online professional learning intervention to develop teachers’ pedagogical design capacity to develop five-dimensional (5D) learning and assessment opportunities, which involve integrated use of science and engineering practices, disciplinary core ideas, and crosscutting concepts in science to make sense of phenomena and problems that are interesting to students and support students as knowers, doers, and users of science. We present findings from our design study, which suggest both the promise of such an approach and some of the challenges and tensions experienced by teachers as they chose and used phenomena to support 5D learning opportunities for students.  more » « less
Award ID(s):
2010086
PAR ID:
10346281
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Chinn, Clark; Tan, Edna; Chan, Carol K.; Kali, Yael
Date Published:
Journal Name:
Computersupported collaborative learning
ISSN:
1573-4552
Page Range / eLocation ID:
1145-1159
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reform efforts targeting science instruction emphasize that students should develop scientific proficiency that empowers them to collaboratively negotiate science ideas as they develop meaningful understandings about science phenomena through science practices. The lessons teachers design and enact play a critical role in engaging students in rigorous science learning. Collaborative design, in which teachers work together to design, enact, and reflect on their teaching, holds potential to support teachers’ learning, but scarce research examines the pathways by which collaborative design can influence teachers’ instructional practices. Examining the teaching and reflective thinking of two science teachers who engaged in collaborative design activities over two years, we found that their enactment practices became more supportive of students’ rigorous learning over time, and that they perceived collaborative efforts with teacher educators and partner teachers to plan lessons and analyze videos of instruction as supportive of their learning to enact rigorous instruction. 
    more » « less
  2. Reform efforts targeting science instruction emphasize that students should develop scientific proficiency that empowers them to collaboratively negotiate science ideas as they develop meaningful understandings about science phenomena through science practices. The lessons teachers design and enact play a critical role in engaging students in rigorous science learning. Collaborative design, in which teachers work together to design, enact, and reflect on their teaching, holds potential to support teachers’ learning, but scarce research examines the pathways by which collaborative design can influence teachers’ instructional practices. Examining the teaching and reflective thinking of two science teachers who engaged in collaborative design activities over two years, we found that their enactment practices became more supportive of students’ rigorous learning over time, and that they identified collaborative efforts with teacher educators and partner teachers to plan lessons and analyze videos of instruction as supportive of their learning to enact rigorous instruction. 
    more » « less
  3. Abstract Recent instructional reforms in science education aim to change the way students engage in learning in the discipline, as they describe that students are to engage with disciplinary core ideas, crosscutting concepts, and the practices of science to make sense of phenomena (NRC, 2012). For such sensemaking to become a reality, there is a need to understand the ways in which students' thinking can be maintained throughout the trajectory of science lessons. Past research in this area tends to foreground either the curriculum or teachers' practices. We propose a more comprehensive view of science instruction, one that requires attention to teachers' practice, the instructional task, and students' engagement. In this study, by examining the implementation of the same lesson across three different classrooms, our analysis of classroom videos and artifacts of students' work revealed how the interaction of teachers' practices, students' intellectual engagement, and a cognitively demanding task together support rigorous instruction. Our analyses shed light on their interaction that shapes opportunities for students' thinking and sensemaking throughout the trajectory of a science lesson. The findings provide implications for ways to promote rigorous opportunities for students' learning in science classrooms. 
    more » « less
  4. Chinn, C; Tan, E; Chan, C; Kali, Y (Ed.)
    Robotics activities can provide students with opportunities to engage in computational thinking (CT) as well as support disciplinary learning goals. The goal of the Robots in Science project is to create, implement, and refine a PD program for middle school science teachers to design and implement robotics and CT-integrated science lessons. Two case studies illustrate how teachers used robotics activities to provide opportunities for science learning. 
    more » « less
  5. Chinn, C; Tan, E; Chan, C; Kali, Y (Ed.)
    Robotics activities can provide students with opportunities to engage in computational thinking (CT) as well as support disciplinary learning goals. The goal of the Robots in Science project is to create, implement, and refine a PD program for middle school science teachers to design and implement robotics and CT-integrated science lessons. Two case studies illustrate how teachers used robotics activities to provide opportunities for science learning. 
    more » « less