skip to main content


Title: Earth stewardship: Shaping a sustainable future through interacting policy and norm shifts
Abstract Transformation toward a sustainable future requires an earth stewardship approach to shift society from its current goal of increasing material wealth to a vision of sustaining built, natural, human, and social capital—equitably distributed across society, within and among nations. Widespread concern about earth’s current trajectory and support for actions that would foster more sustainable pathways suggests potential social tipping points in public demand for an earth stewardship vision. Here, we draw on empirical studies and theory to show that movement toward a stewardship vision can be facilitated by changes in either policy incentives or social norms. Our novel contribution is to point out that both norms and incentives must change and can do so interactively. This can be facilitated through leverage points and complementarities across policy areas, based on values, system design, and agency. Potential catalysts include novel democratic institutions and engagement of non-governmental actors, such as businesses, civic leaders, and social movements as agents for redistribution of power. Because no single intervention will transform the world, a key challenge is to align actions to be synergistic, persistent, and scalable.  more » « less
Award ID(s):
2022036 1636476
NSF-PAR ID:
10346325
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Date Published:
Journal Name:
Ambio
Volume:
51
Issue:
9
ISSN:
0044-7447
Page Range / eLocation ID:
1907 to 1920
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Humanity is on a deeply unsustainable trajectory. We are exceeding planetary boundaries and unlikely to meet many international sustainable development goals and global environmental targets. Until recently, there was no broadly accepted framework of interventions that could ignite the transformations needed to achieve these desired targets and goals.

    As a component of the IPBES Global Assessment, we conducted an iterative expert deliberation process with an extensive review of scenarios and pathways to sustainability, including the broader literature on indirect drivers, social change and sustainability transformation. We asked, what are the most important elements of pathways to sustainability?

    Applying a social–ecological systems lens, we identified eight priority points for intervention (leverage points) and five overarching strategic actions and priority interventions (levers), which appear to be key to societal transformation. The eightleverage pointsare: (1) Visions of a good life, (2) Total consumption and waste, (3) Latent values of responsibility, (4) Inequalities, (5) Justice and inclusion in conservation, (6) Externalities from trade and other telecouplings, (7) Responsible technology, innovation and investment, and (8) Education and knowledge generation and sharing. The five intertwinedleverscan be applied across the eight leverage points and more broadly. These include: (A) Incentives and capacity building, (B) Coordination across sectors and jurisdictions, (C) Pre‐emptive action, (D) Adaptive decision‐making and (E) Environmental law and implementation. The levers and leverage points are all non‐substitutable, and each enables others, likely leading to synergistic benefits.

    Transformative change towards sustainable pathways requires more than a simple scaling‐up of sustainability initiatives—it entails addressing these levers and leverage points to change the fabric of legal, political, economic and other social systems. These levers and leverage points build upon those approved within the Global Assessment's Summary for Policymakers, with the aim of enabling leaders in government, business, civil society and academia to spark transformative changes towards a more just and sustainable world.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  2. Despite improvements, international food supply in general and coffee supply in particular continue to cause significant greenhouse gas emissions, economic inequities, and negative impacts on human well-being. There is agreement that dominant economic paradigms need to change to comply with the sustainability principles of environmental integrity, economic resilience, and social equity. However, so far, little empirical evidence has been generated to what extent and under which conditions sustainable international coffee supply could be realized through small intermediary businesses such as roasteries, breweries, and/or retailers. This case study reports on a collaborative project between a small coffee brewery and its customers in the U.S. and a small coffee roastery and its suppliers in Mexico that demonstrates how sustainable coffee supply could look like and explores under which conditions it can be realized. A research team facilitated the cooperation using a transdisciplinary research approach, including field visits and stakeholder workshops. The project (i) assessed the sustainability challenges of the current supply and value chains; (ii) developed a vision of a joint sustainable coffee supply chain; (iii) build a strategy to achieve this vision, and (iv) piloted the implementation of the strategy. We discuss the project results against the conditions for sustainable international coffee supply offered in the literature (why they were fulfilled, or not). Overall, the study suggests that small intermediary coffee businesses might have the potential to infuse sustainability across their supply chain if cooperating with “open cards.” The findings confirm some and add some conditions, including economic resilience through cooperation, problem recognition, transparency, trust, and solidarity across the supply chain. The study concludes with reflections on study limitations and future research needs. 
    more » « less
  3. Abstract The COVID-19 pandemic has exposed an interconnected and tightly coupled globalized world in rapid change. This article sets the scientific stage for understanding and responding to such change for global sustainability and resilient societies. We provide a systemic overview of the current situation where people and nature are dynamically intertwined and embedded in the biosphere, placing shocks and extreme events as part of this dynamic; humanity has become the major force in shaping the future of the Earth system as a whole; and the scale and pace of the human dimension have caused climate change, rapid loss of biodiversity, growing inequalities, and loss of resilience to deal with uncertainty and surprise. Taken together, human actions are challenging the biosphere foundation for a prosperous development of civilizations. The Anthropocene reality—of rising system-wide turbulence—calls for transformative change towards sustainable futures. Emerging technologies, social innovations, broader shifts in cultural repertoires, as well as a diverse portfolio of active stewardship of human actions in support of a resilient biosphere are highlighted as essential parts of such transformations. 
    more » « less
  4. There have been numerous demands for enhancements in the way undergraduate learning occurs today, especially at a time when the value of higher education continues to be called into question (The Boyer 2030 Commission, 2022). One type of demand has been for the increased integration of subjects/disciplines around relevant issues/topics—with a more recent trend of seeking transdisciplinary learning experiences for students (Sheets, 2016; American Association for the Advancement of Science, 2019). Transdisciplinary learning can be viewed as the holistic way of working equally across disciplines to transcend their own disciplinary boundaries to form new conceptual understandings as well as develop new ways in which to address complex topics or challenges (Ertas, Maxwell, Rainey, & Tanik, 2003; Park & Son, 2010). This transdisciplinary approach can be important as humanity’s problems are not typically discipline specific and require the convergence of competencies to lead to innovative thinking across fields of study. However, higher education continues to be siloed which makes the authentic teaching of converging topics, such as innovation, human-technology interactions, climate concerns, or harnessing the data revolution, organizationally difficult (Birx, 2019; Serdyukov, 2017). For example, working across a university’s academic units to collaboratively teach, or co-teach, around topics of convergence are likely to be rejected by the university systems that have been built upon longstanding traditions. While disciplinary expertise is necessary and one of higher education’s strengths, the structures and academic rigidity that come along with the disciplinary silos can prevent modifications/improvements to the roles of academic units/disciplines that could better prepare students for the future of both work and learning. The balancing of disciplinary structure with transdisciplinary approaches to solving problems and learning is a challenge that must be persistently addressed. These institutional challenges will only continue to limit universities seeking toward scaling transdisciplinary programs and experimenting with novel ways to enhance the value of higher education for students and society. This then restricts innovations to teaching and also hinders the sharing of important practices across disciplines. To address these concerns, a National Science Foundation Improving Undergraduate STEM Education project team, which is the topic of this paper, has set the goal of developing/implementing/testing an authentically transdisciplinary, and scalable educational model in an effort to help guide the transformation of traditional undergraduate learning to span academics silos. This educational model, referred to as the Mission, Meaning, Making (M3) program, is specifically focused on teaching the crosscutting practices of innovation by a) implementing co-teaching and co-learning from faculty and students across different academic units/colleges as well as b) offering learning experiences spanning multiple semesters that immerse students in a community that can nourish both their learning and innovative ideas. As a collaborative initiative, the M3 program is designed to synergize key strengths of an institution’s engineering/technology, liberal arts, and business colleges/units to create a transformative undergraduate experience focused on the pursuit of innovation—one that reaches the broader campus community, regardless of students’ backgrounds or majors. Throughout the development of this model, research was conducted to help identify institutional barriers toward creating such a cross-college program at a research-intensive public university along with uncovering ways in which to address these barriers. While data can show how students value and enjoy transdisciplinary experiences, universities are not likely to be structured in a way to support these educational initiatives and they will face challenges throughout their lifespan. These challenges can result from administration turnover whereas mutual agreements across colleges may then vanish, continued disputes over academic territory, and challenges over resource allotments. Essentially, there may be little to no incentives for academic departments to engage in transdisciplinary programming within the existing structures of higher education. However, some insights and practices have emerged from this research project that can be useful in moving toward transdisciplinary learning around topics of convergence. Accordingly, the paper will highlight features of an educational model that spans disciplines along with the workarounds to current institutional barriers. This paper will also provide lessons learned related to 1) the potential pitfalls with educational programming becoming “un-disciplinary” rather than transdisciplinary, 2) ways in which to incentivize departments/faculty to engage in transdisciplinary efforts, and 3) new structures within higher education that can be used to help faculty/students/staff to more easily converge to increase access to learning across academic boundaries. 
    more » « less
  5. Decades of social science scholarship have documented and explored the interconnected nature of science, technology, and society. Multiple theoretical frameworks suggest the potential to direct this process of mutuallv shaping toward desired outcomes and away from undesired ones through broader inclusion of new voices and visions. In 2010, a group of researchers, educators, and policy practitioners established the Expert and Citizen Assessment of Science and Technology (ECAST) network to operationalize these frameworks. Over the course of a decade, ECAST developed an innovative and reflexive participatory technology assessment (pTA) method to support democratic science policy decision-making in different technical, social, and political contexts. The method’s reflexive nature gave rise to continuous innovations and iterative improvements. The current ECAST pTA method includes three participatory phases: 1) Problem Framing; 2) ECAST Citizen Deliberation; and 3) Results and Integration. Proving adaptable and replicable, the method has generated outputs for decision-making on a variety of science and technology issues and at governance scales ranging from the local to the national and international. ECAST’s distributed network model has also promoted independence, continuity, and sustainability through changing sociopolitical contexts. In this paper, we detail the current state of the ECAST pTA method; share mini case studies to illustrate circumstances that prompted new method innovations; and offer a vision for further developing and integrating pTA into democratic science policy decision-making. 
    more » « less