The
- Award ID(s):
- 1809077
- PAR ID:
- 10346390
- Date Published:
- Journal Name:
- Journal of Physics D: Applied Physics
- Volume:
- 55
- Issue:
- 39
- ISSN:
- 0022-3727
- Page Range / eLocation ID:
- 395101
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
β -Ga2O3nanomembrane (NM)/diamond heterostructure is one of the promising ultra-wide bandgap heterostructures that offers numerous complementary advantages from both materials. In this work, we have investigated the thermal properties of theβ -Ga2O3NM/diamond heterostructure with three different thicknesses ofβ -Ga2O3nanomembranes (NMs), namely 100 nm, 1000 nm, and 4000 nm thickβ -Ga2O3NMs using Raman thermometry. The thermal property—temperature relationships of theseβ -Ga2O3NM/diamond heterostructures, such as thermal conductivity and interfacial thermal boundary conductance were determined under different temperature conditions (from 100 K to 500 K with a 40 K interval). The result provides benchmark knowledge about the thermal conductivity ofβ -Ga2O3NMs over a wide temperature range for the design of novelβ -Ga2O3-based power electronics and optoelectronics. -
Abstract Here, high power flexible Schottky barrier diodes (SBDs) are demonstrated on a plastic substrate using single crystalline β‐Ga2O3nanomembranes (NMs). In order to realize flexible high power β‐Ga2O3SBDs, sub‐micron thick freestanding β‐Ga2O3NMs are created from a bulk β‐Ga2O3substrate and transfer‐printed onto the plastic substrate via a microtransfer printing method. It is revealed that the material property of β‐Ga2O3NMs such as crystal structure, electron affinity, and bandgap remains unchanged compared with its bulk properties. Flexible β‐Ga2O3SBDs exhibit the record high critical breakdown field strength (
E c) of 1.2 MV cm−1in the flat condition and 1.07 MV cm−1ofE cunder the bending condition. Overall, flexible β‐Ga2O3SBDs offer great promise for future flexible energy convergence systems and are expected to provide a much larger and more versatile platform to address a broader range of high‐performance flexible applications. -
In this work, the structural and electrical properties of metalorganic chemical vapor deposited Si-doped β-(Al x Ga 1−x ) 2 O 3 thin films grown on (010) β-Ga 2 O 3 substrates are investigated as a function of Al composition. The room temperature Hall mobility of 101 cm 2 /V s and low temperature peak mobility (T = 65 K) of 1157 cm 2 /V s at carrier concentrations of 6.56 × 10 17 and 2.30 × 10 17 cm −3 are measured from 6% Al composition samples, respectively. The quantitative secondary ion mass spectroscopy (SIMS) characterization reveals a strong dependence of Si and other unintentional impurities, such as C, H, and Cl concentrations in β-(Al x Ga 1−x ) 2 O 3 thin films, with different Al compositions. Higher Al compositions in β-(Al x Ga 1−x ) 2 O 3 result in lower net carrier concentrations due to the reduction of Si incorporation efficiency and the increase of C and H impurity levels that act as compensating acceptors in β-(Al x Ga 1−x ) 2 O 3 films. Lowering the growth chamber pressure reduces Si concentrations in β-(Al x Ga 1−x ) 2 O 3 films due to the increase of Al compositions as evidenced by comprehensive SIMS and Hall characterizations. Due to the increase of lattice mismatch between the epifilm and substrate, higher Al compositions lead to cracking in β-(Al x Ga 1−x ) 2 O 3 films grown on β-Ga 2 O 3 substrates. The (100) cleavage plane is identified as a major cracking plane limiting the growth of high-quality Si-doped (010) β-(Al x Ga 1−x ) 2 O 3 films beyond the critical thicknesses, which leads to highly anisotropic and inhomogeneous behaviors in terms of conductivity.more » « less
-
null (Ed.)In this paper, we demonstrated large-size free-standing single-crystal β-Ga 2 O 3 NMs fabricated by the hydrogen implantation and lift-off process directly from MOCVD grown β-Ga 2 O 3 epifilms on native substrates. The optimum implantation conditions were simulated with a Monte-Carlo simulation method to obtain a high hydrogen concentration with a narrow ion distribution at the desired depth. Two as grown β-Ga 2 O 3 samples with different orientations ([100] and [001]) were used to successfully create 1.2 μm thick β-Ga 2 O 3 NMs without any physical damage. These β-Ga 2 O 3 NMs were then transfer-printed onto rigid and flexible substrates such as SiC and polyimide substrates. Various material characterization studies were performed to investigate their crystal quality, surface morphologies, optical properties, mechanical properties, and bandgaps before and after the lift-off and revealed that the good material quality was maintained. This result offers several benefits in that the thickness, doping, and size of β-Ga 2 O 3 NMs can be fully controlled. Moreover, more advanced β-Ga 2 O 3 -based NM structures such as (Al x Ga 1−x ) 2 O 3 /Ga 2 O 3 heterostructure NMs can be directly created from their bulk epitaxy substrates; thus this study provides a viable route for the realization of high performance β-Ga 2 O 3 NM-based electronics and optoelectronics that can be built on various substrates and platforms.more » « less
-
Abstract A unique field termination structure combining a three-step field plate with nitrogen ion implantation to enhance the reverse breakdown performance of Pt/
β -Ga2O3Schottky barrier diodes (SBDs) and NiO/β -Ga2O3heterojunction diodes (HJDs) is reported. The fabricated devices showed a lowR on,spof 6.2 mΩ cm2for SBDs and 6.8 mΩ cm2for HJDs. HJDs showed a 0.8 V turn-on voltage along with an ideality factor of 1.1 leading to a low effective on-resistance of 18 mΩ cm2. The devices also showed low reverse leakage current (<1 mA cm−2) and a breakdown voltage of ∼1.4 kV. These results offer an alternative, simpler route for fabricating high-performance kilovolt-classβ -Ga2O3diodes.