skip to main content

Title: Extreme Ultraviolet Reflection-Absorption (XUV-RA) Spectroscopy: Probing Dynamics at Surfaces from a Molecular Perspective
Extreme ultraviolet (XUV) light sources based on high harmonic generation are enabling the development of novel spectroscopic methods to help advance the frontiers of ultrafast science and technology. In this account we discuss the development of XUV-RA spectroscopy at near grazing incident reflection geometry and highlight recent applications of this method to study ultrafast electron dynamics at surfaces. Measuring core-to-valence transitions with broadband, femtosecond pulses of XUV light extends the benefits of x-ray absorption spectroscopy to a laboratory tabletop by providing a chemical fingerprint of materials, including the ability to resolve individual elements with sensitivity to oxidation state, spin state, carrier polarity, and coordination geometry. Combining this chemical state sensitivity with femtosecond time resolution provides new insight into the material properties that govern charge carrier dynamics in complex materials. It is well known that surface dynamics differ significantly from equivalent processes in bulk materials, and that charge separation, trapping, transport, and recombination occurring uniquely at surfaces governs the efficiency of numerous technologically relevant processes spanning photocatalysis, photovoltaics, and information storage and processing. Importantly, XUV-RA spectroscopy at near grazing angle is also surface sensitive with a probe depth of 3 nm, providing a new window into electronic and structural dynamics at surfaces and interfaces. Here we highlight the unique capabilities and recent applications of XUVRA spectroscopy to study photo-induced surface dynamics in metal oxide semiconductors, including photocatalytic oxides (Fe2O3, Co3O4 NiO, and CuFeO2) as well as photoswitchable magnetic oxide (CoFe2O4). We first compare the ultrafast electron self-trapping rates via small polaron formation at the surface and bulk of Fe2O3 where we note that the energetics and kinetics of this process differ significantly at the surface. Additionally, we demonstrate the ability to systematically tune this kinetics by molecular functionalization, thereby, providing a route to control carrier transport at surfaces. We also measure the spectral signatures of charge transfer excitons with site specific localization of both electrons and holes in a series of transition metal oxide semiconductors (Fe2O3, NiO, Co3O4). The presence of valence band holes probed at the oxygen L1-edge confirms a direct relationship between the metal-oxygen bond covalency and water oxidation efficiency. For a mixed metal oxide CuFeO2 in the layered delafossite structure, XUV-RA reveals that the sub-picosecond hole thermalization from O 2p to Cu 3d states of CuFeO2 leads to the spatial separation of electrons and holes, resulting in exceptional photocatalytic performance for H2 evolution and CO2 reduction of this material. Finally, we provide an example to show the ability of XUV-RA to probe spin state specific dynamics in a the photo-switchable ferrimagnet, cobalt ferrite (CoFe2O4). This study provides a detailed understating of ultrafast spin switching in a complex magnetic material with site-specific resolution. In summary, the applications of XUV-RA spectroscopy demonstrated here illustrate the current abilities and future promise of this method to extend molecule-level understanding from well-defined photochemical complexes to complex materials so that charge and spin dynamics at surfaces can be tuned with the precision of molecular photochemistry.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Accounts of chemical research
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metal–organic frameworks (MOFs) have emerged as a highly tunable class of porous materials with wide-ranging applications from gas capture to photocatalysis. Developing these exciting properties to their fullest extent requires a thorough mechanistic understanding of the structure–function relationships. We implement an ultrafast spectroscopic toolset, femtosecond transient absorption and femtosecond stimulated Raman spectroscopy (FSRS), to elucidate the correlated electronic and vibrational dynamics of two isostructural 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy)-based MOFs, which manifest drastically different photocatalytic behaviors. Systematic comparisons between the M3+-TBAPy MOFs and bare ligands in various environments reveal the unproductive dimer formation in Al-TBAPy, whereas Sc-TBAPy is dominated by a catalytically active charge-transfer (CT) process. Two ground-state FSRS marker bands of the TBAPy ligand at ∼1267 and 1617 cm−1 probe the chromophore environment at thermal equilibrium. For comparison, the excited-state FSRS of Sc-TBAPy suspended in neutral water unveils a key ∼300 fs twisting motion of the TBAPy peripheral phenyl groups toward planarity, promoting an efficient generation of CT species. This motion also exhibits high sensitivity to solvent environment, which can be a useful probe; we also showed the CT variation for ultrafast dynamics of Sc-TBAPy in the glyphosate aqueous solution. These new insights showcase the power of table-top tunable FSRS methodology to delineate structural dynamics of functional molecular systems in action, including MOFs and other photosensitive “nanomachines.” We expect the uncovered ligand motions (ultrafast planarization) to enable the targeted design of new MOFs with improved CT state characteristics (formation and lifetime) to power applications, including photocatalysis and herbicide removal from waterways. 
    more » « less
  2. Abstract

    Attosecond probing of core-level electronic transitions provides a sensitive tool for studying valence molecular dynamics with atomic, state, and charge specificity. In this report, we employ attosecond transient absorption spectroscopy to follow the valence dynamics of strong-field initiated processes in methyl bromide. By probing the 3dcore-to-valence transition, we resolve the strong field excitation and ensuing fragmentation of the neutral σ* excited states of methyl bromide. The results provide a clear signature of the non-adiabatic passage of the excited state wavepacket through a conical intersection. We additionally observe competing, strong field initiated processes arising in both the ground state and ionized molecule corresponding to vibrational and spin-orbit motion, respectively. The demonstrated ability to resolve simultaneous dynamics with few-femtosecond resolution presents a clear path forward in the implementation of attosecond XUV spectroscopy as a general tool for probing competing and complex molecular phenomena with unmatched temporal resolution.

    more » « less
  3. CuBiW 2 O 8 (CBTO), with a band gap of 1.9–2.0 eV, responds to a wide region of the electromagnetic spectrum, which makes it a good candidate for solar-driven photocatalytic energy conversion and water treatment. We have previously demonstrated a Cu-rich solid state approach that enables the synthesis of CBTO accompanied by thermodynamically stable Bi 2 WO 6 impurity. Here, we describe an improved synthesis protocol with decreased impurity and synthesis time, and the first demonstration of CBTO as a functional material using photocatalytic Cr( vi ) photoreduction as a probe reaction. Transient absorption spectroscopy (TAS) was performed to investigate the ultrafast dynamics of the charge carriers after photoexcitation. The presence of two populations of photoexcited carriers was found, including short-lived free carriers with ∼10 ps lifetime and long-lived shallowly-trapped carriers with ∼1 ns lifetime. Together with carrier mobilities measured in our previous study, the new TAS results indicate that the long-lived charges have diffusion lengths similar to the CBTO particle size and were likely responsible for the majority of the photocatalytic activity. High activity of CBTO for Cr( vi ) photoreduction (∼100% reduction of 5 mg L −1 of Cr( vi ) in 15 minutes) was demonstrated, which clearly establishes the promise of this novel oxide for visible light-driven photocatalytic applications. Radical quenching experiments indicate that both ˙OH radicals and O 2 ˙ − radicals are produced by CBTO and are involved in the photoreduction of Cr( vi ). Repeated photocatalysis tests and analysis of the surface after the reaction show that CBTO is a stable and potentially reusable catalyst. Insights gained from correlating the synthesis conditions, carrier dynamics, and reactive species suggests that CBTO prepared with the improved protocol would be a favorable choice for photocatalytic reactions such as water decontamination from organic pollutants, water splitting, and solar fuel generation using visible light. 
    more » « less
  4. Photoinduced nonequilibrium processes in nanoscale materials play key roles in photovoltaic and photocatalytic applications. This review summarizes recent theoretical investigations of excited state dynamics in metal halide perovskites (MHPs), carried out using a state-of-the-art methodology combining nonadiabatic molecular dynamics with real-time time-dependent density functional theory. The simulations allow one to study evolution of charge carriers at the ab initio level and in the time-domain, in direct connection with time-resolved spectroscopy experiments. Eliminating the need for the common approximations, such as harmonic phonons, a choice of the reaction coordinate, weak electron–phonon coupling, a particular kinetic mechanism, and perturbative calculation of rate constants, we model full-dimensional quantum dynamics of electrons coupled to semiclassical vibrations. We study realistic aspects of material composition and structure and their influence on various nonequilibrium processes, including nonradiative trapping and relaxation of charge carriers, hot carrier cooling and luminescence, Auger-type charge–charge scattering, multiple excitons generation and recombination, charge and energy transfer between donor and acceptor materials, and charge recombination inside individual materials and across donor/acceptor interfaces. These phenomena are illustrated with representative materials and interfaces. Focus is placed on response to external perturbations, formation of point defects and their passivation, mixed stoichiometries, dopants, grain boundaries, and interfaces of MHPs with charge transport layers, and quantum confinement. In addition to bulk materials, perovskite quantum dots and 2D perovskites with different layer and spacer cation structures, edge passivation, and dielectric screening are discussed. The atomistic insights into excited state dynamics under realistic conditions provide the fundamental understanding needed for design of advanced solar energy and optoelectronic devices. 
    more » « less
  5. Mixed-dimensional van der Waals heterojunctions involve interfacing materials with different dimensionalities, such as a 2D transition metal dichalcogenide and a 0D organic semiconductor. These heterojunctions have shown unique interfacial properties not found in either individual component. Here, we use femtosecond transient absorption to reveal photoinduced charge transfer and interlayer exciton formation in a mixed-dimensional type-II heterojunction between monolayer MoS2 and vanadyl phthalocyanine (VOPc). Selective excitation of the MoS2 exciton leads to hole transfer from the MoS2 valence band to VOPc highest occupied molecular orbit in ∼710 fs. On the contrary, selective photoexcitation of the VOPc layer leads to instantaneous electron transfer from its excited state to the conduction band of MoS2 in less than 100 fs. This light-initiated ultrafast separation of electrons and holes across the heterojunction interface leads to the formation of an interlayer exciton. These interlayer excitons formed across the interface lead to longer-lived charge-separated states of up to 2.5 ns, longer than in each individual layer of this heterojunction. Thus, the longer charge-separated state along with ultrafast charge transfer times provide promising results for photovoltaic and optoelectronic device applications.

    more » « less