skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fabrication of waveguides in flexible glass via femtosecond laser micromachining and visualization of ultrafast dynamics of the laser-glass interaction
We fabricate waveguides in Corning® flexible glass using Femtosecond Laser Micromachining (FLM) and visualize the ultrafast plasma dynamics which lead to waveguide formation via time-resolved interferometry. Due to minimal thermal effects and highly-nonlinear optical processes [1], FLM is an ideal tool to fabricate waveguides in glass with high precision and without post processing. We optimize laser fabrication of waveguides by varying scanning speed and pulse energy and, in particular, achieve waveguides with circular cross-sections using slit beam shaping [2]. Further optimization requires investigation of the underlying dynamics of how structural changes in glass are made during and after laser-glass interactions. Thus, we visualize the creation and recombination of plasma in glass which leads to the formation of waveguides using time- resolved interferometry [3]. [1] Rafael R. Gattass and Eric Mazur, Nature Photonics 2, 219–225 (2008)); [2] M. Ams et al. Opt. Express 13, 5676-5681 (2005); [3] G. C. Nagar, D. Dempsey, and B. Shim, Communications Physics 4, 96 (2021).  more » « less
Award ID(s):
2010365
PAR ID:
10346635
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
63rd Annual Meeting of the APS Division of Plasma Physics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We measure the nonlinear index of refraction (n2) and investigate plasma dynamics in flexible Corning® Willow® Glass using single-shot Frequency Domain Holography (FDH). Flexible glass has received a lot of attention recently due to various applications such as 3-D photonics and wearable devices. Femtosecond laser micromachining (FLM) is a viable tool to fabricate these devices because of minimal thermal effects and thus enables fabrication of small and clean 3-D structures. To control and understand the underlying dynamics of FLM, ultrafast visualization of plasma and optical Kerr effect is important. FDH is a robust femtosecond time-resolved technique in which chirped reference and probe pulses centered at 404 nm are used to measure and visualize the plasma and Kerr effect produced by an intense, ultrashort pump pulse centered at 808 nm. Using FDH, we study laser-matter interactions in Willow Glass and measure its n2 to be 3.41 +/-0.08 ×10-16 cm2/W and visualize the plasma dynamics. 
    more » « less
  2. We visualize the ultrafast dynamics caused by intense femtosecond laser pulses in both thin flexible glass as well as gaseous atoms and molecules using single-shot Frequency Domain Holography (FDH) [1-3]. FDH is a robust, single-shot, time-resolved visualization technique that employs chirped pulses. Femtosecond laser micromachining of glass materials relies critically on the Kerr effect and ionization, thus direct observation of their dynamics can help produce optical devices such as waveguides. For gases, single-shot visualization of laser-matter interactions will allow for a better understanding of nonlinear optical phenomena such as filamentation [4] and Raman-induced extreme spectral broadening [5]. Using FDH, we have previously observed the ionization dynamics of thin, flexible glass and measured its nonlinear index [3], and are currently investigating the ultrafast dynamics of gases under intense laser fields. [1] S. P. Le Blanc et al., Opt. Lett. 56, 764-766 (2000). [2] K. Y. Kim et al., APL, 88 4124-4126 (2002). [3] S. Huang et. al., OFC 1-3 (2014). [4] A. Couairon et al., Phys. Rep. 441, 47 (2007). [5] D. Dempsey et al. Opt. Lett. 45, 1252-1255 (2020). 
    more » « less
  3. We visualize material modification during laser micromachining, in particular, laser waveguide fabrication in flexible Corning® Willow® Glass via time-resolved interferometry, and single-shot frequency-domain holography which is a robust technique for studying permanent material change/damage. 
    more » « less
  4. The primary goal of this research is to use lasers to visualize and study the density gradients and flow in gases and plasma. We compare and contrast three methods of laser imaging to measure density gradients and flow in gases and plasma: (1) shadowgraphy, (2) knife-edge schlieren, and (3) two-color interferometry. The first, being the simplest, utilizes a method to visualize the density gradients sans spatial filters or reference beams. Shadowgraphy only records the spatial second derivative or Laplacian of the refractive index field, making the method largely qualitative. The second is sensitive to density gradients, but only in one direction at a time. Lastly, two-wavelength interferometry employs one wavelength which is more sensitive in the plasma while the other is more sensitive to the neutral gas, to further study, distinguish, and quantify the refractive index changes between plasma and neutral gas. Taken together, these three techniques provide a holistic insight into the flow mechanics of plasma and gases. 
    more » « less
  5. We experimentally and theoretically investigate plasma dynamics in laser filamentation in fused silica by varying the driver wavelength from 1.2 to 2.3 μm covering the near-zero to the anomalous group-velocity dispersion regimes. First, we perform femtosecond time-resolved interferometry to measure plasma densities in filaments, which unexpectedly reveals that plasma densities are not monotonically decreasing with increasing wavelength. This result is in sharp contrast to recent theoretical work in filamentation in air/gases as well as our own numerical simulations in fused silica in which the electron collision time is assumed to be constant for all the wavelengths. Therefore, to investigate further, we also perform time-resolved shadowgraphy which, combined with interferometry, enables us to determine the electron collision time in plasma. We find out that the electron collision time is not a constant for different wavelengths, which can change the plasma dynamics in filamentation significantly. 
    more » « less