skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wavelength scaling of the high-intensity laser pulse compression dynamics in gas-filled capillaries
The multimodal carrier-resolved unidirectional pulse propagation equation is solved to study the wavelength-dependent (λ = 1, 2, 3 and 4 μm) spatio-temporal dynamics, particularly pulse self-compression during high-intensity laser pulse propagation in gas-filled capillaries. We find that pulse self-compression in gas-filled capillaries due to plasma is more efficient for short wavelengths in contrast to wavelength-dependent pulse self-compression in laser filamentation [1]. To explain our finding, a detailed analysis is performed by quantifying the contributions of higher-order modes and calculating the temporal delay among modes, which reveals that pulse self-compression at longer wavelengths does not occur due to larger group velocity mismatch between the fundamental and higher-order modes for longer wavelengths [2]. Our study has important implications for the various fields of high-intensity nonlinear optics in gas-filled capillaries such as supercontinuum generation and high-order harmonic generation [3]. [1] L. Bergé et al., Phys. Rev. A 88, 023816 (2013). [2] G. Nagar and B. Shim, submitted. [3] T. Popmitchev et al. Science 336, 1287 (2012).  more » « less
Award ID(s):
2010365
PAR ID:
10346638
Author(s) / Creator(s):
;
Date Published:
Journal Name:
63rd Annual Meeting of the APS Division of Plasma Physics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We report an anomalous regime of laser-matter interactions, which is created by the wavelength dependence of electron collision time during filamentation in solids. Experiments are performed using femtosecond-time-resolved interferometry by varying the filament driver wavelength from 1.2 to 2.3 μm and using a 0.8-μm probe. Information on the phase and absorption via interferometry enables simultaneous measurements of plasma densities and electron collision times during filamentation. Although it is expected that the plasma density decreases with increasing wavelength due to larger plasma-defocusing at longer wavelengths [1-4], our measured plasma densities are nearly constant for all the pump wavelengths. This observation is successfully explained by the measured wavelength-dependence of electron collision time: electron collision times in filament-produced plasma decrease with increasing wavelength, which creates an anomalous regime of plasma-defocusing where longer wavelengths experience smaller plasma defocusing. In addition, simulations with the measured electron collision times successfully reproduce the observed plasma density scaling with wavelength [5]. [1] L. Bergé et al., Phys. Rev. A 88, 023816 (2013). [2] Y. E. Geints et al., Appl. Opt. 56, 1397 (2017). [3] S. Tochitsky et al., Nat. Photonics 13, 41 (2019). [4] R. I. Grynko et al., Phys. Rev. A 98, 023844 (2018). [5] Nagar et al., submitted. 
    more » « less
  2. Ionization is a fundamental process in intense laser–matter interactions and is known to cause plasma defocusing and intensity clamping. Here, we investigate theoretically the propagation dynamics of an intense laser pulse in a helium gas jet in the ionization saturation regime, and we find that the pulse undergoes self-focusing and self-compression through ionization-induced reshaping, resulting in a manyfold increase in laser intensity. This unconventional behavior is associated with the spatiotemporal frequency variation mediated by ionization and spatiotempral coupling. Our results illustrate a new regime of pulse propagation and open up an optics-less approach for raising laser intensity. 
    more » « less
  3. We theoretically and computationally study the generation of high-order harmonics in the water window from a semi-infinite gas cell where a few-cycle, carrier-envelope-phase-controlled 1.7-µm driving laser pulse undergoes nonlinear propagation via optical Kerr effect (self-focusing) and plasma defocusing. Our calculation shows that high harmonic signals are enhanced for extended propagation distances and furthermore, isolated attosecond pulses in the water window can be generated from the semi-infinite gas cell. This enhancement is attributed mainly to better phase matching for extended propagation distances achieved via nonlinear propagation and resulting intensity stabilization. 
    more » « less
  4. The high power and variable repetition-rate of Yb femtosecond lasers makes them very attractive for ultrafast science. However, for capturing sub-200 fs dynamics, efficient, high-fidelity and high-stability pulse compression techniques are essential. Spectral broadening using an all-solid-state free-space geometry is particularly attractive, as it is simple, robust and low-cost. However, spatial and temporal losses caused by spatio-spectral inhomogeneities have been a major challenge to date, due to coupled space-time dynamics associated with unguided nonlinear propagation. In this work, we use all-solid-state free-space compressors to demonstrate compression of 170 fs pulses at a wavelength of 1030nm from a Yb:KGW laser to ∼9.2 fs, with a highly spatially homogeneous mode. This is achieved by ensuring that the nonlinear beam propagation in periodic layered Kerr media occurs in spatial soliton modes, and by confining the nonlinear phase through each material layer to less than 1.0 rad. A remarkable spatio-spectral homogeneity of ∼0.87 can be realized, which yields a high efficiency of >50% for few-cycle compression. The universality of the method is demonstrated by implementing high-quality pulse compression under a wide range of laser conditions. The high spatiotemporal quality and the exceptional stability of the compressed pulses are further verified by high-harmonic generation. Our predictive method offers a compact and cost-effective solution for high-quality few-cycle-pulse generation from Yb femtosecond lasers, and will enable broad applications in ultrafast science and extreme nonlinear optics. 
    more » « less
  5. The advent of chirped-pulse amplification in the 1980s and femtosecond Ti:sapphire lasers in the 1990s enabled transformative advances in intense laser–matter interaction physics. Whereas most of experiments have been conducted in the limited near-infrared range of 0.8–1 μm, theories predict that many physical phenomena such as high harmonic generation in gases favor long laser wavelengths in terms of extending the high-energy cutoff. Significant progress has been made in developing few-cycle, carrier-envelope phase-stabilized, high-peak-power lasers in the 1.6–2 μm range that has laid the foundation for attosecond X ray sources in the water window. Even longer wavelength lasers are becoming available that are suitable to study light filamentation, high harmonic generation, and laser–plasma interaction in the relativistic regime. Long-wavelength lasers are suitable for sub-bandgap strong-field excitation of a wide range of solid materials, including semiconductors. In the strong-field limit, bulk crystals also produce high-order harmonics. In this review, we first introduce several important wavelength scaling laws in strong-field physics, then describe recent breakthroughs in short- (1.4–3 μm), mid- (3–8 μm), and long-wave (8–15 μm) infrared laser technology, and finally provide examples of strong-field applications of these novel lasers. Some of the broadband ultrafast infrared lasers will have profound effects on medicine, environmental protection, and national defense, because their wavelengths cover the water absorption band, the molecular fingerprint region, as well as the atmospheric infrared transparent window. 
    more » « less