- Award ID(s):
- 1724433
- Publication Date:
- NSF-PAR ID:
- 10346672
- Journal Name:
- GigaByte
- Volume:
- 2022
- ISSN:
- 2709-4715
- Sponsoring Org:
- National Science Foundation
More Like this
-
Reisen, William (Ed.)Abstract The incidence of tick-borne diseases has increased in recent decades and accounts for the majority of vector-borne disease cases in temperate areas of Europe, North America, and Asia. This emergence has been attributed to multiple and interactive drivers including changes in climate, land use, abundance of key hosts, and people’s behaviors affecting the probability of human exposure to infected ticks. In this forum paper, we focus on how land use changes have shaped the eco-epidemiology of Ixodes scapularis-borne pathogens, in particular the Lyme disease spirochete Borrelia burgdorferi sensu stricto in the eastern United States. We use this as a model system, addressing other tick-borne disease systems as needed to illustrate patterns or processes. We first examine how land use interacts with abiotic conditions (microclimate) and biotic factors (e.g., host community composition) to influence the enzootic hazard, measured as the density of host-seeking I. scapularis nymphs infected with B. burgdorferi s.s. We then review the evidence of how specific landscape configuration, in particular forest fragmentation, influences the enzootic hazard and disease risk across spatial scales and urbanization levels. We emphasize the need for a dynamic understanding of landscapes based on tick and pathogen host movement and habitat use in relationmore »
-
Globally, zoonotic vector-borne diseases are on the rise and understanding their complex transmission cycles is pertinent to mitigating disease risk. In North America, Lyme disease is the most commonly reported vector-borne disease and is caused by transmission of Borrelia burgdorferi sensu lato (s.l.) from Ixodes spp. ticks to a diverse group of vertebrate hosts. Small mammal reservoir hosts are primarily responsible for maintenance of B. burgdorferi s.l. across the United States. Never- theless, birds can also be parasitized by ticks and are capable of infection with B. burgdorferi s.l. but their role in B. burgdorferi s.l. transmission dynamics is understudied. Birds could be important in both the maintenance and spread of B. burgdorferi s.l. and ticks because of their high mobility and shared habitat with important mammalian reservoir hosts. This study aims to better understand the role of avian hosts in tick-borne zoonotic disease transmission cycles in the western United States. We surveyed birds, mammals, and ticks at nine sites in northern California for B. burgdorferi s.l. infection and collected data on other metrics of host community composition such as abundance and diversity of birds, small mammals, lizards, predators, and ticks. We found 22.8% of birds infected with B. burgdorferimore »
-
Abstract Neotropical birds are mostly parasitized by immature ticks and act as reservoir hosts of tick‐borne pathogens of medical and veterinary interest. Hence, determining the factors that enable ticks to encounter these highly mobile hosts and increase the potential for tick dispersal throughout migratory flyways are important for understanding tick‐borne disease transmission. We used 9682 individual birds from 572 species surveyed across Brazil and Bayesian models to disentangle possible avian host traits and climatic drivers of infestation probabilities, accounting for avian host phylogenetic relationships and spatiotemporal factors that may influence tick prevalence. Our models revealed that the probability of an individual bird being infested with tick larvae and nymphs was lower in partial migrant hosts and during the wet season. Notably, infestation probability increased in areas with a higher proportion of partial migrant birds. Other avian ecological traits known to influence tick prevalence (foraging habitat and body mass) and environmental condition that might constrain tick abundance (annual precipitation and minimum temperature) did not explain infestation probability. Our findings suggest that migratory flyways harbouring a greater abundance of migrant bird hosts also harbour a higher prevalence of immature ticks with potential to enhance the local transmission of tick‐borne pathogens and spreadmore »
-
Abstract Aim Prediction of novel reservoirs of zoonotic pathogens would be improved by the identification of interspecific drivers of host competence (i.e., the ability to transmit pathogens to new hosts or vectors). Tick‐borne pathogens can provide a useful model system, because larvae become infected only when feeding on a competent host during their first blood meal. For tick‐borne diseases, competence has been studied best for
Borrelia burgdorferi sensu lato (Bb sl), which causes Lyme borreliosis. Major reservoirs include several small mammal species, but birds might play an under‐recognized role in human risk given their ability to disperse infected ticks across large spatial scales. Here, we provide a global synthesis of the ecological and evolutionary factors that determine the ability of bird species to infect larval ticks withBb sl.Location Global.
Time period 1983–2019.
Major taxa studied Birds.
Methods We compiled a dataset of
Bb sl competence across 183 bird species and applied meta‐analysis, phylogenetic factorization and boosted regression trees to describe spatial and temporal patterns in competence, characterize its phylogenetic distribution across birds, reconstruct its evolution and evaluate the trait profiles associated with competent avian species.Results Half of the sampled bird species show evidence of competence for
Bb sl. Competence displays moderate phylogenetic signal, has evolved multiple times across bird species and ismore »Main conclusion Our results can generate new hypotheses for how birds contribute to the dynamics of tick‐borne pathogens and help to prioritize surveillance of likely but unsampled competent birds. Our findings also emphasize that birds display under‐recognized variation in their contributions to enzootic cycles of
Bb sl and the broader need to consider competence in ecological and predictive studies of multi‐host pathogens. -
Machtinger, Erika (Ed.)Abstract Tick-borne diseases are emerging globally, necessitating increased research and coordination of tick surveillance practices. The most widely used technique for active collection of host-seeking, human-biting tick vectors is ‘tick dragging’, by which a cloth is dragged across the top of the vegetation or forest floor and regularly checked for the presence of ticks. Use of variable dragging protocols limits the ability of researchers to combine data sets for comparative analyses or determine patterns and trends across different spatial and temporal scales. Standardization of tick drag collection and reporting methodology will greatly benefit the field of tick-pathogen studies. Based on the recommendations of the Center for Disease Control and Prevention and other ecological considerations, we propose that tick dragging should be conducted to sample at least 750 m2 along linear transects when habitat allows in a manner that reduces bias in the sampled area, and report density of each tick species and life stage separately. A protocol for constructing a standard drag cloth, establishing linear transects, and drag sampling is presented, along with a downloadable datasheet that can be modified to suit the needs of different projects. Efforts to align tick surveillance according to these standard best practices will helpmore »