Abstract Changing climate has driven shifts in species phenology, influencing a range of ecological interactions from plant–pollinator to consumer–resource. Phenological changes in host–parasite systems have implications for pathogen transmission dynamics. The seasonal timing, or phenology, of peak larval and nymphal tick abundance is an important driver of tick‐borne pathogen prevalence through its effect on cohort‐to‐cohort transmission. Tick phenology is tightly linked to climatic factors such as temperature and humidity. Thus, variation in climate within and across regions could lead to differences in phenological patterns. These differences may explain regional variation in tick‐borne pathogen prevalence of the Lyme disease‐causingBorreliabacteria in vector populations in the United States. For example, one factor thought to contribute to high Lyme disease prevalence in ticks in the eastern United States is the asynchronous phenology of ticks there, where potentially infected nymphal ticks emerge earlier in the season than uninfected larval ticks. This allows the infected nymphal ticks to transmit the pathogen to hosts that are subsequently fed upon by the next generation of larval ticks. In contrast, in the western United States where Lyme disease prevalence is generally much lower, tick phenology is thought to be more synchronous with uninfected larvae emerging slightly before, or at the same time as, potentially infected nymphs, reducing horizontal transmission potential. Sampling larval and nymphal ticks, and their host‐feeding phenology, both across large spatial gradients and through time, is challenging, which hampers attempts to conduct detailed studies of phenology to link it with pathogen prevalence. In this study, we demonstrate through intensive within‐season sampling that the relative abundance and seasonality of larval and nymphal ticks are highly variable along a latitudinal gradient and likely reflect the variable climate in the far western United States with potential consequences for pathogen transmission. We find that feeding patterns were variable and synchronous feeding of juvenile ticks on key blood meal hosts was associated with mean temperature. By characterizing within‐season phenological patterns of the Lyme disease vector throughout a climatically heterogeneous region, we can begin to identify areas with high potential for tick‐borne disease risk and underlying mechanisms at a finer scale. 
                        more » 
                        « less   
                    
                            
                            Tick abundance, diversity and pathogen data collected by the National Ecological Observatory Network
                        
                    
    
            Cases of tick-borne diseases have been steadily increasing in the USA, owing in part to tick range expansion, land cover and associated host population changes, and habitat fragmentation. However, the relative importance of these and other potential drivers remain poorly understood within this complex disease system. Ticks are ectotherms with multi-host lifecycles, which makes them sensitive to changes in the physical environment and the ecological community. Here, we describe data collected by the National Ecological Observatory Network on tick abundance, diversity and pathogen infection. Ticks are collected using drag or flag methods multiple times in a growing season at 46 terrestrial sites across the USA. Ticks are identified and enumerated by a professional taxonomist, and a subset of nymphs are PCR-tested for various tick-borne pathogens. These data will enable multiscale analyses to better understand how drivers of tick dynamics and pathogen prevalence may shift with climate or land-use change. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1724433
- PAR ID:
- 10346672
- Date Published:
- Journal Name:
- GigaByte
- Volume:
- 2022
- ISSN:
- 2709-4715
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Reisen, William (Ed.)Abstract The incidence of tick-borne diseases has increased in recent decades and accounts for the majority of vector-borne disease cases in temperate areas of Europe, North America, and Asia. This emergence has been attributed to multiple and interactive drivers including changes in climate, land use, abundance of key hosts, and people’s behaviors affecting the probability of human exposure to infected ticks. In this forum paper, we focus on how land use changes have shaped the eco-epidemiology of Ixodes scapularis-borne pathogens, in particular the Lyme disease spirochete Borrelia burgdorferi sensu stricto in the eastern United States. We use this as a model system, addressing other tick-borne disease systems as needed to illustrate patterns or processes. We first examine how land use interacts with abiotic conditions (microclimate) and biotic factors (e.g., host community composition) to influence the enzootic hazard, measured as the density of host-seeking I. scapularis nymphs infected with B. burgdorferi s.s. We then review the evidence of how specific landscape configuration, in particular forest fragmentation, influences the enzootic hazard and disease risk across spatial scales and urbanization levels. We emphasize the need for a dynamic understanding of landscapes based on tick and pathogen host movement and habitat use in relation to human resource provisioning. We propose a coupled natural-human systems framework for tick-borne diseases that accounts for the multiple interactions, nonlinearities and feedbacks in the system and conclude with a call for standardization of methodology and terminology to help integrate studies conducted at multiple scales.more » « less
- 
            Globally, zoonotic vector-borne diseases are on the rise and understanding their complex transmission cycles is pertinent to mitigating disease risk. In North America, Lyme disease is the most commonly reported vector-borne disease and is caused by transmission of Borrelia burgdorferi sensu lato (s.l.) from Ixodes spp. ticks to a diverse group of vertebrate hosts. Small mammal reservoir hosts are primarily responsible for maintenance of B. burgdorferi s.l. across the United States. Never- theless, birds can also be parasitized by ticks and are capable of infection with B. burgdorferi s.l. but their role in B. burgdorferi s.l. transmission dynamics is understudied. Birds could be important in both the maintenance and spread of B. burgdorferi s.l. and ticks because of their high mobility and shared habitat with important mammalian reservoir hosts. This study aims to better understand the role of avian hosts in tick-borne zoonotic disease transmission cycles in the western United States. We surveyed birds, mammals, and ticks at nine sites in northern California for B. burgdorferi s.l. infection and collected data on other metrics of host community composition such as abundance and diversity of birds, small mammals, lizards, predators, and ticks. We found 22.8% of birds infected with B. burgdorferi s.l. and that the likelihood of avian B. burgdorferi s.l. infection was significantly associated with local host community composition and pathogen prevalence in California. Addition- ally, we found an average tick burden of 0.22 ticks per bird across all species. Predator and lizard abundances were significant predictors of avian tick infestation. These results indicate that birds are relevant hosts in the local B. burgdorferi s.l. transmission cycle in the western United States and quantifying their role in the spread and maintenance of Lyme disease requires further research.more » « less
- 
            Machtinger, Erika (Ed.)Abstract Tick-borne diseases are emerging globally, necessitating increased research and coordination of tick surveillance practices. The most widely used technique for active collection of host-seeking, human-biting tick vectors is ‘tick dragging’, by which a cloth is dragged across the top of the vegetation or forest floor and regularly checked for the presence of ticks. Use of variable dragging protocols limits the ability of researchers to combine data sets for comparative analyses or determine patterns and trends across different spatial and temporal scales. Standardization of tick drag collection and reporting methodology will greatly benefit the field of tick-pathogen studies. Based on the recommendations of the Center for Disease Control and Prevention and other ecological considerations, we propose that tick dragging should be conducted to sample at least 750 m2 along linear transects when habitat allows in a manner that reduces bias in the sampled area, and report density of each tick species and life stage separately. A protocol for constructing a standard drag cloth, establishing linear transects, and drag sampling is presented, along with a downloadable datasheet that can be modified to suit the needs of different projects. Efforts to align tick surveillance according to these standard best practices will help generate robust data on tick population biology.more » « less
- 
            A vector's susceptibility and ability to transmit a pathogen—termed vector competency—determines disease outcomes, yet the ecological factors influencing tick vector competency remain largely unknown. Ixodes pacificus, the tick vector of Borrelia burgdorferi (Bb) in the western U.S., feeds on rodents, birds, and lizards. Rodents and birds are reservoirs for Bb and infect juvenile ticks, while lizards are refractory to Bb and cannot infect feeding ticks. Additionally, the lizard bloodmeal contains borreliacidal properties, clearing previously infected feeding ticks of their Bb infection. Despite I. pacificus feeding on a range of hosts, it is undetermined how the host identity of the larval bloodmeal affects future nymphal vector competency. We experimentally evaluate the influence of larval host bloodmeal on Bb acquisition by nymphal I. pacificus. Larval I. pacificus were fed on either lizards or mice and after molting, nymphs were fed on Bb-infected mice. We found that lizard-fed larvae were significantly more likely to become infected with Bb during their next bloodmeal than mouse-fed larvae. We also conducted the first RNA-seq analysis on whole-bodied I. pacificus and found significant upregulation of tick antioxidants and antimicrobial peptides in the lizard-fed group. Our results indicate that the lizard bloodmeal significantly alters vector competency and gene regulation in ticks, highlighting the importance of host bloodmeal identity in vector-borne disease transmission and upends prior notions about the role of lizards in Lyme disease community ecology.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    