We derive formulas for the leading mass, entropy, and long-range self-force corrections to extremal black holes due to higher-derivative operators. These formulas hold for black holes with arbitrary couplings to gauge fields and moduli, provided that the leading-order solutions are static, spherically-symmetric, extremal, and have nonzero horizon area. To use these formulas, both the leading-order black hole solution and the higher-derivative effective action must be known, but there is no need to solve the derivative-corrected equations of motion. We demonstrate that the mass, entropy and self-force corrections involve linearly-independent combinations of the higher-derivative couplings at any given point in the moduli space, and comment on their relations to various swampland conjectures.
more »
« less
Repulsive black holes and higher-derivatives
A bstract In two-derivative theories of gravity coupled to matter, charged black holes are self-attractive at large distances, with the force vanishing at zero temperature. However, in the presence of massless scalar fields and four-derivative corrections, zero-temperature black holes no longer need to obey the no-force condition. In this paper, we show how to calculate the long-range force between such black holes. We develop an efficient method for computing the higher-derivative corrections to the scalar charges when the theory has a shift symmetry, and compute the resulting force in a variety of examples. We find that higher-derivative corrected black holes may be self-attractive or self-repulsive, depending on the value of the Wilson coefficients and the VEVs of scalar moduli. Indeed, we find black hole solutions which are both superextremal and self-attractive. Furthermore, we present examples where no choice of higher-derivative coefficients allows for self-repulsive black hole states in all directions in charge space. This suggests that, unlike the Weak Gravity Conjecture, which may be satisfied by the black hole spectrum alone, the Repulsive Force Conjecture requires additional constraints on the spectrum of charged particles.
more »
« less
- Award ID(s):
- 1915038
- PAR ID:
- 10346887
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2022
- Issue:
- 3
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> It was recently shown that (near-)extremal Kerr black holes are sensitive probes of small higher-derivative corrections to general relativity. In particular, these corrections produce diverging tidal forces on the horizon in the extremal limit. We show that adding a black hole charge makes this effect qualitatively stronger. Higher-derivative corrections to the Kerr-Newman solution produce tidal forces that scale inversely in the black hole temperature. We find that, unlike the Kerr case, for realistic values of the black hole charge large tidal forces can arise before quantum corrections due to the Schwarzian mode become important, so that the near-horizon behavior of the black hole is dictated by higher-derivative terms in the effective theory.more » « less
-
null (Ed.)A bstract It is well known that an identical pair of extremal Reissner-Nordström black holes placed a large distance apart will exert no force on each other. In this paper, I establish that the same result holds in a very large class of two-derivative effective theories containing an arbitrary number of gauge fields and moduli, where the appropriate analog of an extremal Reissner-Nordström black hole is a charged, spherically symmetric black hole with vanishing surface gravity or vanishing horizon area. Analogous results hold for black branes.more » « less
-
A<sc>bstract</sc> We show that the general charged, rotating black hole in five-dimensional Einstein-Maxwell theory has a singular extremal limit. Only the known analytic solutions with exactly zero charge or zero angular momenta have smooth extremal horizons. We also consider general black holes in five-dimensional Einstein-Maxwell-Chern-Simons theory, and show that they also have singular extremal limits except for one special value of the coefficient of the Chern-Simons term (the one fixed by supergravity). Combining this with earlier results showing that extremal black holes have singular horizons in four-dimensional general relativity with small higher derivative corrections, and in anti-de Sitter space with perturbed boundary conditions, one sees that smooth extremal horizons are indeed the exception and not the rule.more » « less
-
Abstract Due to the failure of thermodynamics for low temperature near-extremal black holes, it has long been conjectured that a ‘thermodynamic mass gap’ exists between an extremal black hole and the lightest near-extremal state. For non-supersymmetric near-extremal black holes in Einstein gravity with an AdS 2 throat, no such gap was found. Rather, at that energy scale, the spectrum exhibits a continuum of states, up to non-perturbative corrections. In this paper, we compute the partition function of near-BPS black holes in supergravity where the emergent, broken, symmetry is PSU (1, 1|2). To reliably compute this partition function, we show that the gravitational path integral can be reduced to that of a N = 4 supersymmetric extension of the Schwarzian theory, which we define and exactly quantize. In contrast to the non-supersymmetric case, we find that black holes in supergravity have a mass gap and a large extremal black hole degeneracy consistent with the Bekenstein–Hawking area. Our results verify a plethora of string theory conjectures, concerning the scale of the mass gap and the counting of extremal micro-states.more » « less
An official website of the United States government

