skip to main content


Title: CCERS STEM + C – Emphasis on the Professional Learning of the Classroom Teachers – Expansion of the Pillar
This qualitative study chronicles one of the fundamental pillars of the Curriculum and Community Enterprise for Restoration Science (CCERS). The professional development is focused on curricula that are grounded in the community-based environmental restoration of the waterways of New York Harbor. Centered on the restoration of the native oyster population, hundreds of New York City public school teachers take part in this experience with the intent of increasing their own place-based pedagogical content knowledge and skills. Most of the participants teach in school with populations that are underrepresented in post-secondary STEM majors and STEM related careers. Professional learning activities for teachers and community scientists were offered throughout the 2021 calendar year. Professional Learning Activity Surveys were administered and teachers responded to questions about how they participated in CCERS events, the ways in which CCERS participation has impacted their teaching practice, whether they use CCERS activities for student research, and ways CCERS participation impacts student STEM career interest. An intended outcome is to instill a STEM identity in students identifying as URM and to bring STEM career awareness to these students. More than 72% of the teachers in the professional development sessions agreed that the professional learning activities were effective in providing new STEM content knowledge and best practices for teaching. The majority also reported that the sessions enabled them to increase their students’ engagement with STEM and interest in STEM careers.  more » « less
Award ID(s):
1839656 1759006
NSF-PAR ID:
10346896
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Curriculum and Teaching
Volume:
11
Issue:
4
ISSN:
1927-2677
Page Range / eLocation ID:
210
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Billion Oyster Project and Curriculum and Community Enterprise for the Restoration of New York Harbor with New York City Public Schools (BOP-CCERS) program is a National Science Foundation (NSF) supported initiative and collaboration of multiple institutions and organizations led by Pace University. The NSF project, Innovative Technology Experiences for Students and Teachers (ITEST), had generated a large amount of data through engagement with teachers and students throughout New York City public schools. This article presents the second part to a large data collection study with focus on Underrepresented Minority (URM) student interest in STEM and engagement with teachers to support them in teaching science through experiential learning and lessons that connect science to the real world, particularly through science in the New York Harbor. The first component of the study focused on URM student interest in STEM. This second component of the study focuses on teacher engagement in the program, and what the researchers had learned in the process. Overall, teachers reported very favorable options on the impact of the BOP-CCERS activities as ways to generate student interest in STEM majors and careers. Teacher participants were generally positive about the amount of support and resources they received as members of the project, as well as the oyster-related knowledge and practices they learned to use with their own students in oyster field research. Data from the study provided evidence that the teacher activities were successful and met the project’s goals to provide support and resources for teachers to engage students in oyster restoration research. 
    more » « less
  2. null (Ed.)
    Professional Development in the field of education has undergone several shifts in focus. Currently, teacher contentknowledge and the ability to disseminate this knowledge is the focus in professional learning communities. Theimportance of creating a thriving STEM workforce in the United States has been promoted for the last decade.Studies have shown that capturing students’ interest must occur before they enter high school, ideally in the middleschool years (Blotnicky, Franz-Odendaal, French, & Phillip, 2018). Teachers are the conduits for encouragingstudents to explore STEM-related career options. Student engagement is piqued when there is a strong real-worldconnection to the content being presented. Students find relevance through actual experience with the concepts andskills incorporated in projects that are community-based. The Curriculum and Community Enterprise for RestorationScience STEM + C Project is the marriage of these two components. The professional development of the New YorkCity middle school teachers involved in the CCERS STEM +C Project furnishes these educators with the tools tostimulate students’ interest by tackling a problem in their local community using STEM-related content andcomputational thinking. The hope is that authenticity of the learning experience will entice all students, especiallythose under-represented populations in the STEM workforce, to consider this as a viable career pathway. Theanalysis of this project is intended to highlight the significant inroads made and the value of self-reflection andre-design in strengthening the work as it continues. 
    more » « less
  3. The Billion Oyster Project and Curriculum and Community Enterprise for the Restoration of New York Harbor withNew York City Public Schools (BOP-CCERS) seeks to integrate harbor restoration activities with science teachers inorder to provide their students with experiential learning through environmental impact in New York City with thevision that public school students in New York City can benefit from environmental science and experiential learningwork through authentic research, data collection, and experimentation. The purpose is to engage science teachers withexperiential learning opportunities in the New York Harbor that helps them create engaging lessons for their ownstudents. It was found that teachers responded most positively to workshops that included hands-on activities,specifically the oyster restoration station trainings, classroom oyster tank setups and activities with scientists. Teachersreported that the BOP-CCERS program prepared them to support student learning of the program content and scientificresearch activities. Students who engage in real-world science are more likely to see the relevance of science and seethemselves working toward a career pathway in STEM. 
    more » « less
  4. Abstract The CCERS partnership includes collaborators from universities, foundations, education departments, community organizations, and cultural institutions to build a new curriculum. As reported in a study conducted by the Rand Corporation (2011), partnerships among districts, community-based organizations, government agencies, local funders, and others can strengthen learning programs. The curriculum merged project-based learning and Bybee’s 5E model (Note 1) to teach core STEM-C concepts to urban middle school students through restoration science. CCERS has five interrelated and complementary programmatic pillars (see details in the next section). The CCERS curriculum encourages urban middle school students to explore and participate in project-based learning activities restoring the oyster population in and around New York Harbor. In Melaville, Berg and Blank’s Community Based Learning (2001) there is a statement that says, “Education must connect subject matter with the places where students live and the issues that affect us all”. Lessons engage students and teachers in long-term restoration ecology and environmental monitoring projects with STEM professionals and citizen scientists. In brief, partners have created curriculums for both in-school and out-of-school learning programs, an online platform for educators and students to collaborate, and exhibits with community partners to reinforce and extend both the educators’ and their students’ learning. Currently CCERS implementation involves: • 78 middle schools • 127 teachers • 110 scientist volunteers • Over 5000 K-12 students In this report, we present summative findings from data collected via surveys among three cohorts of students whose teachers were trained by the project’s curriculum and findings from interviews among project leaders to answer the following research questions: 1. Do the five programmatic pillars function independently and collectively as a system of interrelated STEM-C content delivery vehicles that also effectively change students’ and educators’ disposition towards STEM-C learning and environmental restoration and stewardship? 2. What comprises the "curriculum plus community enterprise" local model? 3. What are the mechanisms for creating sustainability and scalability of the model locally during and beyond its five-year implementation? 4. What core aspects of the model are replicable? Findings suggest the program improved students’ knowledge in life sciences but did not have a significant effect on students’ intent to become a scientist or affinity for science. Published by Sciedu Press 1 ISSN 2380-9183 E-ISSN 2380-9205 http://irhe.sciedupress.com International Research in Higher Education Vol. 3, No. 4; 2018 Interviews with project staff indicated that the key factors in the model were its conservation mission, partnerships, and the local nature of the issues involved. The primary mechanisms for sustainability and scalability beyond the five-year implementation were the digital platform, the curriculum itself, and the dissemination (with over 450 articles related to the project published in the media and academic journals). The core replicable aspects identified were the digital platform and adoption in other Keystone species contexts. 
    more » « less
  5. Despite limited success in broadening participation in engineering with rural and Appalachian youth, there remain challenges such as misunderstandings around engineering careers, misalignments with youth’s sociocultural background, and other environmental barriers. In addition, middle school science teachers may be unfamiliar with engineering or how to integrate engineering concepts into science lessons. Furthermore, teachers interested in incorporating engineering into their curriculum may not have the time or resources to do so. The result may be single interventions such as a professional development workshop for teachers or a career day for students. However, those are unlikely to cause major change or sustained interest development. To address these challenges, we have undertaken our NSF ITEST project titled, Virginia Tech Partnering with Educators and Engineers in Rural Schools (VT PEERS). Through this project, we sought to improve youth awareness of and preparation for engineering related careers and educational pathways. Utilizing regular engagement in engineering-aligned classroom activities and culturally relevant programming, we sought to spark an interest with some students. In addition, our project involves a partnership with teachers, school districts, and local industry to provide a holistic and, hopefully, sustainable influence. By engaging over time we aspired to promote sustainability beyond this NSF project via increased teacher confidence with engineering related activities, continued integration within their science curriculum, and continued relationships with local industry. From the 2017-2020 school years the project has been in seven schools across three rural counties. Each year a grade level was added; that is, the teachers and students from the first year remained for all three years. Year 1 included eight 6th grade science teachers, year 2 added eight 7th grade science teachers, and year 3 added three 8th grade science teachers and a career and technology teacher. The number of students increased from over 500 students in year 1 to over 2500 in year 3. Our three industry partners have remained active throughout the project. During the third and final year in the classrooms, we focused on the sustainable aspects of the project. In particular, on how the intervention support has evolved each year based on data, support requests from the school divisions, and in scaffolding “ownership” of the engineering activities. Qualitative data were used to support our understanding of teachers’ confidence to incorporate engineering into their lessons plans and how their confidence changed over time. Noteworthy, our student data analysis resulted in an instrument change for the third year; however due to COVID, pre and post data was limited to schools who taught on a semester basis. Throughout the project we have utilized the ITEST STEM Workforce Education Helix model to support a pragmatic approach of our research informing our practice to enable an “iterative relationship between STEM content development and STEM career development activities… within the cultural context of schools, with teachers supported by professional development, and through programs supported by effective partnerships.” For example, over the course of the project, scaffolding from the University leading interventions to teachers leading interventions occurred. 
    more » « less