- Award ID(s):
- 1801446
- NSF-PAR ID:
- 10347021
- Date Published:
- Journal Name:
- Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
- Page Range / eLocation ID:
- 3268 to 3283
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Right ventricular (RV) failure remains a significant burden for patients with advanced heart failure, especially after major cardiac surgeries such as implantation of left ventricular assist devices. Device solutions that can assist the complex biological function of heart muscle without the disadvantages of bulky designs and infection‐prone drivelines remain an area of pressing clinical need, especially for the right ventricle. In addition, devices that incur contact between blood and artificial surfaces mandate long‐term use of blood‐thinning medications, carrying increased risks for the patients. This work describes the design of a biomimetic, elastic sleeve to support RV‐specific motion via tuned regional mechanical properties. The RV external device (RVEX) in computational models as well as benchtop models and ex vivo (i.e., explanted heart) setups are evaluated to characterize the device and predict functional benefit. Additionally, long‐term implantation potential is demonstrated in mice. Finally, the ability to sensorize the RVEX device to yield resistive self‐sensing capabilities to continuously monitor ventricular deformation, as demonstrated in benchtop experiments and in live animal surgeries, is proposed.