skip to main content


Title: The case for the Global Stratotype Section and Point (GSSP) for the base of the Norian Stage
The Norian Stage is the longest stage in the Phanerozoic, and some members of the boundary working group have been evaluating suitable Carnian-Norian boundary sections for roughly two decades. This has identified two possible candidate boundary sections, at Black Bear Ridge (British Columbia, Canada) and Pizzo Mondello (Sicily, Italy). After a formal voting procedure within the working group, ending on the 26th July, 2021, the Pizzo Mondello section was selected as the global stratotype section and point for the base of the Norian. We evaluated the global correlation potential of the two proposed primary markers, the conodont Metapolygnathus parvus and the ‘flat-clam’ Halobia austriaca. Secondary markers were also evaluated around these boundary datums for correlation potential, and the veracity of the proposed sections for GSSP status. Data and arguments for the proposed sections and datums are presented here. Through a two-stage process of option elimination in voting, conforming with ICS guidelines, the working group decided by 60% majority to propose that the first occurrence datum of Halobia austriaca in the Pizzo Mondello section at the base of bed FNP135A should become the ‘golden spike’ for the base of the Norian. A secondary biotic marker for this boundary is the first occurrence of Primatella (Carnepigondolella) gulloae, in sample NA43, ca. 0 m below FNP135A, and the FA of Dimorphites noricus (sample NA42.1) ca. 3.5 m above bed FNP135 (indicating the first subzone of the Jandianus Zone). The best physical secondary marker is the magnetozone PM5n with the proposed boundary ca.40% through the thickness of PM5n. Strengths of the chosen datum are: 1) it also maintains historical priority for ammonoid zonations, which had placed the base Norian near to this level in Europe, North America and probably NE Asia; 2) Halobia austriaca is widely distributed in all paleolatitudes and is a long-established taxon.  more » « less
Award ID(s):
1654088
PAR ID:
10347307
Author(s) / Creator(s):
Date Published:
Journal Name:
Albertiana
Volume:
46
ISSN:
0169-4324
Page Range / eLocation ID:
25-57
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sections of the Gabbs Formation exposed near New York Canyon, Nevada, have long been recognized as important sites for Late Triassic and Early Jurassic stratigraphy, and the Norian-Rhaetian parts of these sections continue to be important for defining this boundary (NRB). The two candidate sections for the base of the Rhaetian are in Tethys; both sections utilize the first occurrence of the conodont species Misikella posthernsteini as a proxy for the boundary. Although not a candidate section, data from New York Canyon will help to determine the most suitable position for the NRB, especially in Panthalassa. Previous reports of conodonts from New York Canyon recognized a fauna with Mockina englandi, Mo. bidentata and morphotypes of Mo. mosheri in the Nun Mine Member, below isolated occurrences of Zieglericonus rhaeticum and Mi. posthernsteini in the Mount Hyatt and Muller Canyon members. The first occurrence of Mi. posthernsteini in the section occurs well above the first occurrence of Rhaetian ammonoids (Paracochloceras amoenum) and together with late Rhaetian radiolarians. It is also above excursions in Sr- and C-isotopes, both of which correlate with Tethyan NRB excursions. Therefore, the NRB has previously been placed much lower in North America than Tethys, at the first occurrences of the radiolarian Proparvicingula moniliformis and the conodont Mo. mosheri morphotype C. To help reconcile the biochronological and geochemical data from New York Canyon, new conodont samples have been collected from the Nun Mine and Mt Hyatt members at the New York Canyon Road and Luning Draw sections. These samples contain: Mo. englandi, Mo. bidentata, and Mo. mosheri morphotypes B and C, all previously reported from New York Canyon, although this is the first record of Mo. mosheri morphotype C from the Nun Mine Member; Parvigondolella spp. B and C, from much lower in the Nun Mine Member than previously reported; and Pa. andrusovi, which has not previously been recorded from North America. Overall, this fauna represents the Mo. bidentata and Mo. mosheri zones of North America, equivalent to the Sevatian Mo. bidentata and Pa. andrusovi zones of Tethys. This would be consistent with a higher placement of the NRB at New York Canyon; however, if the NRB is to be recognized at the first occurrence of Mo. mosheri morphotype C, then the boundary must be lower than previously thought, within the Nun Mine Member. 
    more » « less
  2. The Whitehorse Group and Quartermaster Formation are extensive red-bed terrestrial sequences representing the final episode of sedimentation in the Palo Duro Basin in north-central Texas, U.S.A. Regionally, these strata record the culmination of a long-term regression sequence beginning in the middle to late Permian. The Whitehorse Group includes beds of abundant laminated to massive red quartz siltstone to fine sandstone and rare dolomite, laminated to massive gypsum, and claystones, as well as diagenetic gypsum. The Quartermaster Formation exhibits a change from nearly equal amounts of thin planar and lenticular fine sandstone and laminated to massive mudstone in its lower half to overlying strata with coarser-grained, cross-bedded sandstones indicative of meandering channels up to 7 m deep and rare overbank mudstones. Paleosols are absent in the Upper Whitehorse Group and only poorly developed in the Quartermaster Formation. Volcanic ash-fall deposits (tuffs) present in uppermost Whitehorse Group and lower Quartermaster Formation strata permit correlation among five stratigraphic sections distributed over ∼150 km and provide geochronologic age information for these rocks. Both the Whitehorse Group and Quartermaster Formation have traditionally been assigned to the late Permian Ochoan (Changhsingian) stage, and workers assumed that the Permian-Triassic boundary is characterized by a regionally significant unconformity. Chemostratigraphic or biostratigraphic evidence for this age assignment, however, have been lacking to date. Single zircon U-Pb CA-TIMS analyses from at least two distinct volcanic ash fall layers in the lower Quartermaster Formation, which were identified and collected from five different localities across the Palo Duro Basin, yield interpreted depositional ages ranging from 252.19 ± 0.30 to 251.74 ± 0.28 Ma. Single zircon U-Pb CA-TIMS analyses of detrital zircons from sandstones located only a few meters beneath the top of the Quartermaster Formation yield a range of dates from Mesoproterozoic (1418 Ma) to Middle Triassic (244.5 Ma; Anisian), the latter of which is interpreted as a maximum depositional age, which is no older than Anisian, thus indicating the Permian-Triassic boundary to lie somewhere within the lower Quartermaster Formation/upper Whitehorse Group succession. Stable carbon isotope data from 180 samples of early-burial dolomicrite cements preserve a chemostratigraphic signal that is similar among sections, with a large ∼−8‰ negative isotope excursion ∼20 m beneath the Whitehorse Group-Quartermaster Formation boundary. This large negative carbon isotope excursion is interpreted to be the same excursion associated with the end-Permian extinction and this is in concert with the new high precision radioisotopic age data presented and the fact that the excursion lies within a normal polarity stratigraphic magnetozone. Dolomite cement δ 13 C values remain less negative (between about −5 and −8 permil) into the lower part of the Quartermaster Formation before becoming more positive toward the top of the section. This long interval of negative δ 13 C values in the Quartermaster Formation is interpreted to represent the earliest Triassic (Induan) inception of biotic and ecosystem “recovery.” Oxygen isotope values of dolomicrite cements show a progressive trend toward more positive values through the boundary interval, suggesting substantially warmer conditions around the end-Permian extinction event and a trend toward cooler conditions after the earliest Triassic. Our observations on these strata show that the paleoenvironment and paleoclimate across the Permian-Triassic boundary in western, sub-equatorial Pangea was characterized by depositional systems that were not conducive to plant preservation. 
    more » « less
  3. The design of mixed-technology quasi-reflectionless planar bandpass filters (BPFs), bandstop filters (BSFs), and multi-band filters is reported. The proposed quasi-reflectionless filter architectures comprise a main filtering section that determines the power transmission response (bandpass, bandstop, or multi-band type) of the overall circuit network and auxiliary sections that absorb the reflected radio-frequency (RF) signal energy. By loading the input and output ports of the main filtering section with auxiliary filtering sections that exhibit a complementary transfer function with regard to the main one, a symmetric quasi-reflectionless behavior can be obtained at both accesses of the overall filter. The operating principles of the proposed filter concept are shown through synthesized first-order BPF and BSF designs. Selectivity-increase techniques are also described. They are based on: (i) cascading in-series multiple first-order stages and (ii) increasing the order of the filtering sections. Moreover, the RF design of quasi-reflectionless multi-band BPFs and BSFs is discussed. A hybrid integration scheme in which microstrip-type and lumped-elements are effectively combined within the filter volume is investigated for size miniaturization purposes. For experimental validation purposes, two quasi-reflectionless BPF prototypes (one- and two-stage architectures) centered at 2 GHz and a second-order BSF prototype centered at 1 GHz were designed, manufactured, and measured. 
    more » « less
  4. Abstract Non-archosaur archosauromorphs are a paraphyletic group of diapsid reptiles that were important members of global Middle and Late Triassic continental ecosystems. Included in this group are the azendohsaurids, a clade of allokotosaurians (kuehneosaurids and Azendohsauridae + Trilophosauridae) that retain the plesiomorphic archosauromorph postcranial body plan but evolved disparate cranial features that converge on later dinosaurian anatomy, including sauropodomorph-like marginal dentition and ceratopsian-like postorbital horns. Here we describe a new malerisaurine azendohsaurid from two monodominant bonebeds in the Blue Mesa Member, Chinle Formation (Late Triassic, ca. 218–220 Ma); the first occurs at Petrified Forest National Park and preserves a minimum of eight individuals of varying sizes, and the second occurs near St. Johns, Arizona. Puercosuchus traverorum n. gen. n. sp. is a carnivorous malerisaurine that is closely related to Malerisaurus robinsonae from the Maleri Formation of India and to Malerisaurus langstoni from the Dockum Group of western Texas. Dentigerous elements from Puercosuchus traverorum n. gen. n. sp. confirm that some Late Triassic tooth morphotypes thought to represent early dinosaurs cannot be differentiated from, and likely pertain to, Puercosuchus -like malerisaurine taxa. These bonebeds from northern Arizona support the hypothesis that non-archosauriform archosauromorphs were locally diverse near the middle Norian and experienced an extinction event prior to the end-Triassic mass extinction coincidental with the Adamanian-Revueltian boundary recognized at Petrified Forest National Park. The relatively late age of this early-diverging taxon (Norian) suggests that the diversity of azendohsaurids is underrepresented in Middle and Late Triassic fossil records around the world. UUID: http://zoobank.org/e6eeefd2-a0ae-47fc-8604-9f45af8c1147 . 
    more » « less
  5. null (Ed.)
    Abstract We present chemostratigraphy, biostratigraphy, and geochronology from a succession that spans the Ediacaran-Cambrian boundary in Sonora, Mexico. A sandy hematite-rich dolostone bed, which occurs 20 m above carbonates that record the nadir of the basal Cambrian carbon isotope excursion within the La Ciénega Formation, yielded a maximum depositional age of 539.40 ± 0.23 Ma using U-Pb chemical abrasion–isotope dilution–thermal ionization mass spectrometry on a population of sharply faceted volcanic zircon crystals. This bed, interpreted to contain reworked tuffaceous material, is above the last occurrences of late Ediacaran body fossils and below the first occurrence of the Cambrian trace fossil Treptichnus pedum, and so the age calibrates key markers of the Ediacaran-Cambrian boundary. The temporal coincidence of rift-related flood basalt volcanism in southern Laurentia (>250,000 km3 of basalt), a negative carbon isotope excursion, and biological turnover is consistent with a mechanistic link between the eruption of a large igneous province and end-Ediacaran extinction. 
    more » « less