Abstract The structure and composition of the crystal growth unit are of huge fundamental and practical consequence. We propose a method to identify the solute species that incorporates into the growth site on crystal surfaces, the kinks, which rests on the kinetics of the elementary reaction at the kinks. We use as model crystals olanzapine, an antipsychotic medication, and etioporphyrin I, a field‐effect transistor. We combine time‐resolvedin situatomic force microscopy with Raman and absorption spectroscopies, complemented by density functional theory and all‐atom molecular dynamics modeling of the solutions. We show that the structure of the growth unit cannot be deduced neither from the solute oligomers nor from the crystal structure. Chemical kinetics analyses reveal that if the dominant solute species is the one that incorporates into the crystal growth sites, then the kinetics of layer growth complies with a monomolecular rate law. By contrast, if the crystal growth unit assembles from two units of the dominant solute form, a bimolecular rate law ensues. Solutions of both olanzapine and etioporphyrin I are dominated by solute monomers, which exist in equilibrium with a minority of dimers. Whereas numerous olanzapine crystal structures incorporate dimer motifs, etioporphyrin I crystals organize as stacks of monomers. Olanzapine crystal grow by incorporation of dimers. One of the studied face of etioporphyrin I grows by incorporation of the majority monomers, whereas the other one selects the minority dimers as a growth unit. The results highlight the power of the crystallization kinetics analyses to identify the growth unit and illuminate one of the most challenging issues of crystal growth.
more »
« less
Precrystallization solute assemblies and crystal symmetry
Solution crystallization is a part of the synthesis of materials ranging from geological and biological minerals to pharmaceuticals, fine chemicals, and advanced electronic components. Attempts to predict the structure, growth rates and properties of emerging crystals have been frustrated, in part, by the poor understanding of the correlations between the oligomeric state of the solute, the growth unit, and the crystal symmetry. To explore how a solute monomer or oligomer is selected as the unit that incorporates into kinks and how crystal symmetry impacts this selection, we combine scanning probe microscopy, optical spectroscopy, and all-atom molecular simulations using as examples two organic materials, olanzapine (OZPN) and etioporphyrin I (EtpI). The dominance of dimeric structures in OZPN crystals has spurred speculation that the dimers preform in the solution, where they capture the majority of the solute, and then assemble into crystals. By contrast, EtpI in crystals aligns in parallel stacks of flat EtpI monomers unrelated by point symmetry. Raman and absorption spectroscopies show that solute monomers are the majority solute species in solutions of both compounds. Surprisingly, the kinetics of incorporation of OZPN into kinks is bimolecular, indicating that the growth unit is a solute dimer, a minority solution component. The disconnection between the dominant solute species, the growth unit, and the crystal symmetry is even stronger with EtpI, for which the (010) face grows by incorporating monomers, whereas the growth unit of the (001) face is a dimer. Collectively, the crystallization kinetics results with OZPN and EtpI establish that the structures of the dominant solute species and of the incorporating solute complex do not correlate with the symmetry of the crystal lattice. In a broader context, these findings illuminate the immense complexity of crystallization scenarios that need to be explored on the road to the understanding and control of crystallization.
more »
« less
- Award ID(s):
- 2128121
- PAR ID:
- 10347462
- Date Published:
- Journal Name:
- Faraday Discussions
- Volume:
- 235
- ISSN:
- 1359-6640
- Page Range / eLocation ID:
- 307 to 321
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Heng, Jerry (Ed.)The morphological evolution of organic crystals during crystallization depends on the face-specific growth rates. Classical growth rate models relate the face-specific growth rates to the crystal lattice, energy of stable facets, growth mechanism, and supersaturation. The complexities of these models have increased over time to account accurately for solution conditions, the structure of growth units, and their attachment rates. Such advanced growth rate models require several layers of computations to obtain attachment energies of facets, nucleation rates, kink density, and attachment rates. Among these, the most intensive and time-consuming computation is for attachment rates, which require molecular dynamic simulations. This substantially increases the overall computation time to predict the absolute growth rate for even one crystallization condition. Since it is nearly impossible to iterate such a growth rate model, optimization schemes cannot be implemented to identify solution conditions that favor specific crystal growth. To reduce the computational time for attachment rate calculations, we implement a group contribution method (GCM) that relates the properties of functional groups in a molecule to their attachment rates to the crystal lattice, thereby rapidly estimating the growth rates of organic crystals. The process of molecular attachment involves partial desolvation of a solvated molecule, referred to as a transition state, followed by total desolvation via spontaneous attachment to a crystal facet. The first step in GCM is to identify the equilibrium states of fully solvated and partially desolvated solute molecules. The degree of supersaturation dictates the extent of this equilibrium and, thereby, the activation barrier for the growth of crystals, according to transition state theory. Identifying this equilibrium phenomenon allows for capturing the functional-group-specific interactions that depend on molecular motion, which could be related to operating conditions such as temperature and pressure. The stochastic optimization technique with Monte-Carlo sampling allows an efficient optimization problem solution to obtain the group interaction parameters. The GCM approach is first validated for the estimation of growth rates of glutamic acid and L-histidine, and then extended to predict growth rates of alanine and glycine rapidly. The optimized parameters and GCM scheme can be used to estimate growth rates in other crystallization systems.more » « less
-
Abstract Modifiers are commonly used in natural, biological, and synthetic crystallization to tailor the growth of diverse materials. Here, we identify tautomers as a new class of modifiers where the dynamic interconversion between solute and its corresponding tautomer(s) produces native crystal growth inhibitors. The macroscopic and microscopic effects imposed by inhibitor-crystal interactions reveal dual mechanisms of inhibition where tautomer occlusion within crystals that leads to natural bending, tunes elastic modulus, and selectively alters the rate of crystal dissolution. Our study focuses on ammonium urate crystallization and shows that the keto-enol form of urate, which exists as a minor tautomer, is a potent inhibitor that nearly suppresses crystal growth at select solution alkalinity and supersaturation. The generalizability of this phenomenon is demonstrated for two additional tautomers with relevance to biological systems and pharmaceuticals. These findings offer potential routes in crystal engineering to strategically control the mechanical or physicochemical properties of tautomeric materials.more » « less
-
DNA-coated colloids can self-assemble into an incredible diversity of crystal structures, but their applications have been limited by poor understanding and control over the crystallization dynamics. To address this challenge, we use microfluidics to quantify the kinetics of DNA-programmed self-assembly along the entire crystallization pathway, from thermally activated nucleation through reaction-limited and diffusion-limited phases of crystal growth. Our detailed measurements of the temperature and concentration dependence of the kinetics at all stages of crystallization provide a stringent test of classical theories of nucleation and growth. After accounting for the finite rolling and sliding rates of micrometer-sized DNA-coated colloids, we show that modified versions of these classical theories predict the absolute nucleation and growth rates with quantitative accuracy. We conclude by applying our model to design and demonstrate protocols for assembling large single crystals with pronounced structural coloration, an essential step in creating next-generation optical metamaterials from colloids.more » « less
-
Abstract Polymer crystalsomes are a class of hollow crystalline polymer nanoparticles with shells formed by single crystals with broken translational symmetry. They have shown intriguing mechanical, thermal, and biomedical properties associated with spherical packing. Previously reported crystalsomes are formed by quasi‐2D lamellae which can readily tile on a spherical surface. In this work, the formation of polymer crystalsomes formed by 1D polymer crystals is reported. Poly (3‐hexylthiophene) (P3HT) is chosen as the model polymer because of its 1D growth habit. P3HT crystalsomes are successfully fabricated using a miniemulsion solution crystallization method, as confirmed by scanning electron microscopy and transmission electron microscopy. X‐ray diffraction (XRD) and selected area electron diffraction experiments confirm that P3HT crystallized into a Form I crystal structure. XRD, differential scanning calorimetry and UV–Vis results reveal curvature‐dependent structural, thermal and electro‐optical properties.more » « less
An official website of the United States government

