skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metal–Metal-to-Ligand Charge Transfer in Pt(II) Dimers Bridged by Pyridyl and Quinoline Thiols
Award ID(s):
1955795
PAR ID:
10347482
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
61
Issue:
1
ISSN:
0020-1669
Page Range / eLocation ID:
121 to 130
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The contact resistance at metal-metal (W, Mo, Ru, Co, TiN) interfaces is determined using a new method based on blanket superlattice thin films where the resistivity ρ parallel to the interfaces is measured as a function of superlattice period Λ to quantify the electron interface scattering. Epitaxial W(001)/Mo(001) superlattices show a continuous resistivity increase from 7.10 to 8.62 µΩ-cm with decreasing Λ = 50-1.7 nm, indicating a contact resistance of 2.6×10-16 Ω-m2. Ru/Co multilayers show a much more pronounced increase from 15.0 to 47.5 µΩ-cm with Λ = 60-2 nm which is attributed to atomic intermixing leading to an interfacial Ru-Co alloy with a high measured ρ = 61 µΩ-cm and a Ru-Co contact resistance for interfaces deposited at 400 °C of 9.1 ×10-15 Ω-m2. Ru/TiN and Co/TiN interface resistances are dominated by the high ρ for TiN, and are therefore proportional to the TiN thickness. 
    more » « less
  2. null (Ed.)
  3. Abstract Metal–organic frameworks (MOFs) are crystalline, 2‐ and 3‐dimensional coordination polymers formed by bonding interactions between metals and multitopic organic ligands. These are typically formed using hard Lewis basic organic ligands with high oxidation state metal ions. The use of low‐valent metals as structural elements in MOFs is far less common, despite the widespread use of such metals for catalysis, luminescence, and other applications. This Minireview focuses on recent advances in the field of low‐valent MOFs and offers a perspective on the future development of these materials. 
    more » « less