skip to main content

Title: The origin of the dust extinction curve in milky way-like galaxies
ABSTRACT We develop a cosmological model for the evolution of dust grains in galaxies with a distribution of sizes in order to understand the origin of the Milky Way dust extinction curve. Our model considers the formation of active dust in evolved stars, growth by accretion and coagulation, and destruction processes via shattering, sputtering, and astration in the ISM of galaxies over cosmic time. Our main results follow. Galaxies in our cosmological model with masses comparable to the Milky Way’s at z ∼ 0 exhibit a diverse range of extinction laws, though with slopes and bump strengths comparable to the range observed in the Galaxy. The progenitors of the Milky Way have steeper slopes, and only flatten to slopes comparable to the Galaxy at z ∼ 1. This owes to increased grain growth rates at late times/in high-metallicity environments driving up the ratio of large to small grains, with a secondary dependence on the graphite-to-silicate ratio evolution. The UV bump strengths depend primarily on the graphite-to-silicate ratio, and remain broadly constant in MW-like galaxies between z = 3 and z = 0, though show slight variability. Our models span comparable regions of bump-slope space as sightlines in the Galaxy do, though there more » is a lack of clear relationship between the model slopes and bump strengths owing to variations among galaxies in the graphite-to-silicate ratio. Our model provides a novel framework to study the origins and variations of dust extinction curves in galaxies over cosmic time. « less
Authors:
; ; ; ;
Award ID(s):
1909153
Publication Date:
NSF-PAR ID:
10347530
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
507
Issue:
1
Page Range or eLocation-ID:
548 to 559
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the properties of dust attenuation curves in galaxies and the physical mechanisms that shape them are among the fundamental questions of extragalactic astrophysics, with great practical significance for deriving the physical properties of galaxies. Attenuation curves result from a combination of dust grain properties, dust content, and the spatial arrangement of dust and different populations of stars. In this review, we assess the state of the field, paying particular attention to extinction curves as the building blocks of attenuation laws. We introduce a quantitative framework to characterize extinction and attenuation curves, present a theoretical foundation for interpreting empirical results, overview an array of observational methods, and review observational results at low and high redshifts. Our main conclusions include the following: ▪  Attenuation curves exhibit a wide range of UV-through-optical slopes, from curves with shallow (Milky Way–like) slopes to those exceeding the slope of the Small Magellanic Cloud extinction curve. ▪  The slopes of the curves correlate strongly with the effective optical opacities, in the sense that galaxies with lower dust column density (lower visual attenuation) tend to have steeper slopes, whereas the galaxies with higher dust column density have shallower (grayer) slopes. ▪  Galaxies exhibit a range of 2175-Åmore »UV bump strengths, including no bump, but, on average, are suppressed compared with the average Milky Way extinction curve. ▪  Theoretical studies indicate that both the correlation between the slope and the dust column as well as variations in bump strength may result from geometric and radiative transfer effects.« less
  2. ABSTRACT We present predictions for the evolution of the galaxy dust-to-gas ratio (DGR) and dust-to-metal ratio (DTM) from z = 0 → 6, using a model for the production, growth, and destruction of dust grains implemented into the simba cosmological hydrodynamic galaxy formation simulation. In our model, dust forms in stellar ejecta, grows by the accretion of metals, and is destroyed by thermal sputtering and supernovae. Our simulation reproduces the observed dust mass function at z = 0, but modestly underpredicts the mass function by ∼×3 at z ∼ 1–2. The z = 0 DGR versus metallicity relationship shows a tight positive correlation for star-forming galaxies, while it is uncorrelated for quenched systems. There is little evolution in the DGR–metallicity relationship between z = 0 and 6. We use machine learning techniques to search for the galaxy physical properties that best correlate with the DGR and DTM. We find that the DGR is primarily correlated with the gas-phase metallicity, though correlations with the depletion time-scale, stellar mass, and gas fraction are non-negligible. We provide a crude fitting relationship for DGR and DTM versus the gas-phase metallicity, along with a public code package that estimates the DGR and DTM given a set ofmore »galaxy physical properties.« less
  3. ABSTRACT

    We report discoveries of 165 new quasar Ca ii absorbers from the Sloan Digital Sky Survey (SDSS) Data Releases 7 and 12. Our ca ii rest-frame equivalent width distribution supports the weak and strong subpopulations, split at ${W}^{\lambda 3934}_{0}=0.7$ Å. Comparison of both populations’ dust depletion shows clear consistency for weak absorber association with halo-type gas in the Milky Way (MW), while strong absorbers have environments consistent with halo and disc-type gas. We probed our high-redshift Ca ii absorbers for 2175 Å dust bumps, discovering 12 2175 Å dust absorbers (2DAs). This clearly shows that some Ca ii absorbers follow the Large Magellanic Cloud (LMC) extinction law rather than the Small Magellanic Cloud extinction law. About 33 per cent of our strong Ca ii absorbers exhibit the 2175 Å dust bump, while only 6 per cent of weak Ca ii absorbers show this bump. 2DA detection further supports the theory that strong Ca ii absorbers are associated with disc components and are dustier than the weak population. Comparing average Ca ii absorber dust depletion patterns to that of Damped Ly α absorbers (DLAs), Mg ii absorbers, and 2DAs shows that Ca ii absorbers generally have environments with more dust than DLAs and Mg ii absorbers, but less dust than 2DAs. Comparing 2175 Å dust bumpmore »strengths from different samples and also the MW and LMC, the bump strength appears to grow stronger as the redshift decreases, indicating dust growth and the global chemical enrichment of galaxies in the Universe over time.

    « less
  4. ABSTRACT

    Observations indicate that a continuous supply of gas is needed to maintain observed star formation rates in large, discy galaxies. To fuel star formation, gas must reach the inner regions of such galaxies. Despite its crucial importance for galaxy evolution, how and where gas joins galaxies is poorly constrained observationally and rarely explored in fully cosmological simulations. To investigate gas accretion in the vicinity of galaxies at low redshift, we analyse the FIRE-2 cosmological zoom-in simulations for 4 Milky Way mass galaxies (Mhalo ∼ 1012M⊙), focusing on simulations with cosmic ray physics. We find that at z ∼ 0, gas approaches the disc with angular momentum similar to the gaseous disc edge and low radial velocities, piling-up near the edge and settling into full rotational support. Accreting gas moves predominately parallel to the disc and joins largely in the outskirts. Immediately prior to joining the disc, trajectories briefly become more vertical on average. Within the disc, gas motion is complex, being dominated by spiral arm induced oscillations and feedback. However, time and azimuthal averages show slow net radial infall with transport speeds of 1–3 km s−1 and net mass fluxes through the disc of ∼M⊙ yr−1, comparable to the galaxies’ starmore »formation rates and decreasing towards galactic centre as gas is sunk into star formation. These rates are slightly higher in simulations without cosmic rays (1–7 km s−1, ∼4–5 M⊙ yr−1). We find overall consistency of our results with observational constraints and discuss prospects of future observations of gas flows in and around galaxies.

    « less
  5. Luminous hot stars ( M K s  ≲ 0 mag and T eff  ≳ 8000 K) dominate the stellar energy input to the interstellar medium throughout cosmological time, are used as laboratories to test theories of stellar evolution and multiplicity, and serve as luminous tracers of star formation in the Milky Way and other galaxies. Massive stars occupy well-defined loci in colour–colour and colour–magnitude spaces, enabling selection based on the combination of Gaia EDR3 astrometry and photometry and 2MASS photometry, even in the presence of substantive dust extinction. In this paper we devise an all-sky sample of such luminous OBA-type stars, which was designed to be complete rather than very pure, providing targets for spectroscopic follow-up with the SDSS-V survey. To estimate the purity and completeness of our catalogue, we derive stellar parameters for the stars in common with LAMOST DR6 and we compare the sample to other O and B-type star catalogues. We estimate ‘astro-kinematic’ distances by combining parallaxes and proper motions with a model for the expected velocity and density distribution of young stars; we show that this adds useful constraints on the distances and therefore luminosities of the stars. With these distances we map the spatial distribution of a moremore »stringently selected subsample across the Galactic disc, and find it to be highly structured, with distinct over- and under-densities. The most evident over-densities can be associated with the presumed spiral arms of the Milky Way, in particular the Sagittarius-Carina and Scutum-Centaurus arms. Yet, the spatial picture of the Milky Way’s young disc structure emerging in this study is complex, and suggests that most young stars in our Galaxy ( t age  <  t dyn ) are not neatly organised into distinct spiral arms. The combination of the comprehensive spectroscopy to come from SDSS-V (yielding velocities, ages, etc.) with future Gaia data releases will be crucial in order to reveal the dynamical nature of the spiral arms themselves.« less