skip to main content


Title: Arabidopsis thaliana CYCLIC NUCLEOTIDE‐GATED CHANNEL2 mediates extracellular ATP signal transduction in root epidermis
Summary

Damage can be signalled by extracellular ATP (eATP) using plasma membrane (PM) receptors to effect cytosolic free calcium ion ([Ca2+]cyt) increase as a second messenger. The downstream PM Ca2+channels remain enigmatic. Here, theArabidopsis thalianaCa2+channel subunit CYCLIC NUCLEOTIDE‐GATED CHANNEL2 (CNGC2) was identified as a critical component linking eATP receptors to downstream [Ca2+]cytsignalling in roots.

Extracellular ATP‐induced changes in single epidermal cell PM voltage and conductance were measured electrophysiologically, changes in root [Ca2+]cytwere measured with aequorin, and root transcriptional changes were determined by quantitative real‐time PCR. Twocngc2loss‐of‐function mutants were used:cngc2‐3anddefence not death1(which expresses cytosolic aequorin).

Extracellular ATP‐induced transient depolarization of Arabidopsis root elongation zone epidermal PM voltage was Ca2+dependent, requiring CNGC2 but not CNGC4 (its channel co‐subunit in immunity signalling). Activation of PM Ca2+influx currents also required CNGC2. The eATP‐induced [Ca2+]cytincrease and transcriptional response incngc2roots were significantly impaired.

CYCLIC NUCLEOTIDE‐GATED CHANNEL2 is required for eATP‐induced epidermal Ca2+influx, causing depolarization leading to [Ca2+]cytincrease and damage‐related transcriptional response.

 
more » « less
Award ID(s):
1826803
NSF-PAR ID:
10364450
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
234
Issue:
2
ISSN:
0028-646X
Format(s):
Medium: X Size: p. 412-421
Size(s):
["p. 412-421"]
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    Extracellular ATP (eATP) is known to act as a danger signal in both plants and animals. In plants, eATP is recognized by the plasma membrane (PM)‐localized receptor P2K1 (LecRK‐I.9). Among the first measurable responses to eATP addition is a rapid rise in cytoplasmic free calcium levels ([Ca2+]cyt), which requires P2K1. However, the specific transporter/channel proteins that mediate this rise in [Ca2+]cytare unknown. Through a forward genetic screen, we identified an Arabidopsis ethylmethanesulfonate (EMS) mutant impaired in the [Ca2+]cytresponse to eATP. Positional cloning revealed that the mutation resided in thecngc6gene, which encodes cyclic nucleotide‐gated ion channel 6 (CNGC6). Mutation of theCNGC6gene led to a notable decrease in the PM inward Ca2+current in response to eATP. eATP‐induced mitogen‐activated protein kinase activation and gene expression were also significantly lower incngc6mutant plants. In addition,cngc6mutant plants were also more susceptible to the bacterial pathogenPseudomonas syringae. Taken together, our results indicate that CNGC6 plays a crucial role in mediating eATP‐induced [Ca2+]cytsignaling, as well as plant immunity.

     
    more » « less
  2. <bold>Summary</bold>

    Cytosolic calcium concentration ([Ca2+]cyt) and heterotrimeric G‐proteins are universal eukaryotic signaling elements. In plant guard cells, extracellular calcium (Cao) is as strong a stimulus for stomatal closure as the phytohormone abscisic acid (ABA), but underlying mechanisms remain elusive. Here, we report that the sole Arabidopsis heterotrimeric Gβ subunit,AGB1, is required for four guard cell Caoresponses: induction of stomatal closure; inhibition of stomatal opening; [Ca2+]cytoscillation; and inositol 1,4,5‐trisphosphate (InsP3) production. Stomata in wild‐type Arabidopsis (Col) and in mutants of the canonical Gα subunit,GPA1, showed inhibition of stomatal opening and promotion of stomatal closure by Cao. By contrast, stomatal movements ofagb1mutants andagb1/gpa1double‐mutants, as well as those of theagg1agg2 Gγ double‐mutant, were insensitive to Cao. These behaviors contrast withABA‐regulated stomatal movements, which involveGPA1 andAGB1/AGG3 dimers, illustrating differential partitioning of G‐protein subunits among stimuli with similar ultimate impacts, which may facilitate stimulus‐specific encoding.AGB1knockouts retained reactive oxygen species andNOproduction, but lostYC3.6‐detected [Ca2+]cytoscillations in response to Cao, initiating only a single [Ca2+]cytspike. Experimentally imposed [Ca2+]cytoscillations restored stomatal closure inagb1. Yeast two‐hybrid and bimolecular complementation fluorescence experiments revealed thatAGB1 interacts with phospholipase Cs (PLCs), and Caoinduced InsP3 production in Col but not inagb1. In sum, G‐protein signaling viaAGB1/AGG1/AGG2 is essential for Cao‐regulation of stomatal apertures, and stomatal movements in response to Caoapparently require Ca2+‐induced Ca2+release that is likely dependent on Gβγ interaction withPLCs leading to InsP3 production.

     
    more » « less
  3. SUMMARY

    Extracellular ATP (eATP) is a key signaling molecule that plays a pivotal role in plant growth and defense responses. The receptor P2K1 is responsible for perceiving eATP and initiating its signaling cascade. However, the signal transduction mechanisms downstream of P2K1 activation remain incompletely understood. We conducted a comprehensive analysis of the P2K1 interactome using co‐immunoprecipitation‐coupled tandem mass spectrometry, leading to the identification of 121 candidate proteins interacting with P2K1. In silico analysis narrowed down the candidates to 47 proteins, including Ca2+‐binding proteins, ion transport‐related proteins, and receptor kinases. To investigate their involvement in eATP signaling, we employed a screening strategy based on changes in gene expression in response to eATP in mutants of the identified interactors. This screening revealed several Ca2+‐dependent protein kinases (CPKs) that significantly affected the expression of eATP‐responsive genes, suggesting their potential roles in eATP signaling. Notably, CPK28 and CPK6 showed physical interactions with P2K1 both in yeast and plant systems. Calcium influx and gene expression studies demonstrated that CPK28 perturbed eATP‐induced Ca2+mobilization and some early transcriptional responses. Overexpression of CPK28 resulted in an antagonistic physiological response to P2K1‐mediated eATP signaling during both plant growth and defense responses to the necrotrophic pathogenBotrytis cinerea. Our findings highlight CPK28, among other CPKs, as a modulator of P2K1‐mediated eATP signaling, providing valuable insights into the coordination of eATP signaling in plant growth and immunity.

     
    more » « less
  4. Abstract Background and Aims Extracellular ATP governs a range of plant functions, including cell viability, adaptation and cross-kingdom interactions. Key functions of extracellular ATP in leaves and roots may involve an increase in cytosolic free calcium as a second messenger (‘calcium signature’). The main aim here was to determine to what extent leaf and root calcium responses require the DORN1/P2K1 extracellular ATP receptor in Arabidopsis thaliana. The second aim was to test whether extracellular ATP can generate a calcium wave in the root. Methods Leaf and root responses to extracellular ATP were reviewed for their possible links to calcium signalling and DORN1/P2K1. Leaves and roots of wild type and dorn1 plants were tested for cytosolic calcium increase in response to ATP, using aequorin. The spatial abundance of DORN1/P2K1 in the root was estimated using green fluorescent protein. Wild type roots expressing GCaMP3 were used to determine the spatial variation of cytosolic calcium increase in response to extracellular ATP. Key Results Leaf and root ATP-induced calcium signatures differed markedly. The leaf signature was only partially dependent on DORN1/P2K1, while the root signature was fully dependent. The distribution of DORN1/P2K1 in the root supports a key role in the generation of the apical calcium signature. Root apical and sub-apical calcium signatures may operate independently of each other but an apical calcium increase can drive a sub-apical increase, consistent with a calcium wave. Conclusion DORN1 could underpin several calcium-related responses but it may not be the only receptor for extracellular ATP in Arabidopsis. The root has the capacity for a calcium wave, triggered by extracellular ATP at the apex. 
    more » « less
  5. Summary

    We investigated the molecular basis and physiological implications of anion transport during pollen tube (PT) growth inArabidopsis thaliana(Col‐0).

    Patch‐clamp whole‐cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+]cyt). We investigated the pollen‐expressed proteinsAtSLAH3,AtALMT12,AtTMEM16 andAtCCCas the putative anion transporters responsible for these currents.

    AtCCCGFPwas observed at the shank andAtSLAH3‐GFPat the tip and shank of thePTplasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip ofPTs with an anion vibrating probe were significantly lower inslah3−/−andccc−/−mutants, but unaffected inalmt12−/−andtmem16−/−. We further characterised the effect ofpHandGABAby patch clamp. Strong regulation by extracellularpHwas observed in the wild‐type, but not intmem16−/−. Our results are compatible withAtTMEM16 functioning as an anion/H+cotransporter and therefore, as a putativepHsensor.GABApresence: (1) inhibited the overall currents, an effect that is abrogated in thealmt12−/−and (2) reduced the current inAtALMT12 transfectedCOS‐7 cells, strongly suggesting the direct interaction ofGABAwithAtALMT12.

    Our data show thatAtSLAH3 andAtCCCactivity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linkingPTgrowth modulation bypH,GABA, and [Ca2+]cytthrough anionic transporters.

     
    more » « less