skip to main content


Title: Origin of Weak Mg ii and Higher-ionization Absorption Lines in Outflows from Intermediate-redshift Dwarf Galaxies
Abstract Observations at intermediate redshifts reveal the presence of numerous compact, weak Mg ii absorbers with near to supersolar metallicities, often surrounded by extended regions that produce C iv and/or O vi absorption, in the circumgalactic medium at large impact parameters from luminous galaxies. Their origin and nature remain unclear. We hypothesize that undetected satellite dwarf galaxies are responsible for producing some of these weak Mg ii absorbers. We test our hypothesis using gas dynamical simulations of galactic outflows from a dwarf galaxy with a halo mass of 5 × 10 9 M ⊙ , as might be falling into a larger L * halo at z = 2. We find that thin, filamentary, weak Mg ii absorbers (≲100 pc) are produced in two stages: (1) when shocked core-collapse supernova (SN II)–enriched gas descending in a galactic fountain gets shock compressed by upward flows driven by subsequent SN II and cools (phase 1) and, later, (2) during an outflow driven by Type Ia supernovae that shocks and sweeps up pervasive SN II–enriched gas, which then cools (phase 2). The Mg ii absorbers in our simulations are continuously generated by shocks and cooling with moderate metallicity ∼0.1–0.2 Z ⊙ but low column density <10 12 cm −2 . They are also surrounded by larger (0.5–1 kpc) C iv absorbers that seem to survive longer. Larger-scale (>1 kpc) C iv and O vi clouds are also produced in both expanding and shocked SN II–enriched gas. Observable ion distributions from our models appear well converged at our standard resolution (12.8 pc). Our simulation highlights the possibility of dwarf galactic outflows producing highly enriched multiphase gas.  more » « less
Award ID(s):
1815461
NSF-PAR ID:
10347595
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
909
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
157
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present initial results from the Cosmic Ultraviolet Baryon Survey (CUBS). CUBS is designed to map diffuse baryonic structures at redshift z ≲ 1 using absorption-line spectroscopy of 15 UV-bright QSOs with matching deep galaxy survey data. CUBS QSOs are selected based on their NUV brightness to avoid biases against the presence of intervening Lyman limit systems (LLSs) at zabs < 1. We report five new LLSs of $\log \, N({\mathrm{ H} \,{\small I}})/{{\rm cm^{-2}}}\gtrsim 17.2$ over a total redshift survey path-length of $\Delta \, z_{\mathrm{ LL}}=9.3$, and a number density of $n(z)=0.43_{-0.18}^{+0.26}$. Considering all absorbers with $\log \, N({{\mathrm{ H} \,{\small I}}})/{{\rm cm^{-2}}}\gt 16.5$ leads to $n(z)=1.08_{-0.25}^{+0.31}$ at zabs < 1. All LLSs exhibit a multicomponent structure and associated metal transitions from multiple ionization states such as C ii, C iii, Mg ii, Si ii, Si iii, and O vi absorption. Differential chemical enrichment levels as well as ionization states are directly observed across individual components in three LLSs. We present deep galaxy survey data obtained using the VLT-MUSE integral field spectrograph and the Magellan Telescopes, reaching sensitivities necessary for detecting galaxies fainter than $0.1\, L_*$ at d ≲ 300 physical kpc (pkpc) in all five fields. A diverse range of galaxy properties is seen around these LLSs, from a low-mass dwarf galaxy pair, a co-rotating gaseous halo/disc, a star-forming galaxy, a massive quiescent galaxy, to a galaxy group. The closest galaxies have projected distances ranging from d = 15 to 72 pkpc and intrinsic luminosities from ${\approx} 0.01\, L_*$ to ${\approx} 3\, L_*$. Our study shows that LLSs originate in a variety of galaxy environments and trace gaseous structures with a broad range of metallicities. 
    more » « less
  2. null (Ed.)
    Context. The chemical enrichment in the interstellar medium (ISM) of galaxies is regulated by several physical processes: star birth and death, grain formation and destruction, and galactic inflows and outflows. Understanding such processes and their relative importance is essential to following galaxy evolution and the chemical enrichment through the cosmic epochs, and to interpreting current and future observations. Despite the importance of such topics, the contribution of different stellar sources to the chemical enrichment of galaxies, for example massive stars exploding as Type II supernovae (SNe) and low-mass stars, as well as the mechanisms driving the evolution of dust grains, such as for example grain growth in the ISM and destruction by SN shocks, remain controversial from both observational and theoretical viewpoints. Aims. In this work, we revise the current description of metal and dust evolution in the ISM of local low-metallicity dwarf galaxies and develop a new description of Lyman-break galaxies (LBGs) which are considered to be their high-redshift counterparts in terms of star formation, stellar mass, and metallicity. Our goal is to reproduce the observed properties of such galaxies, in particular (i) the peak in dust mass over total stellar mass (sMdust) observed within a few hundred million years; and (ii) the decrease in sMdust at a later time. Methods. We fitted spectral energy distribution of dwarf galaxies and LBGs with the “Code Investigating GALaxies Emission”, through which the total stellar mass, dust mass, and star formation rate are estimated. For some of the dwarf galaxies considered, the metal and gas content are available from the literature. We computed different prescriptions for metal and dust evolution in these systems (e.g. different initial mass functions for stars, dust condensation fractions, SN destruction, dust accretion in the ISM, and inflow and outflow efficiency), and we fitted the properties of the observed galaxies through the predictions of the models. Results. Only some combinations of models are able to reproduce the observed trend and simultaneously fit the observed properties of the galaxies considered. In particular, we show that (i) a top-heavy initial mass function that favours the formation of massive stars and a dust condensation fraction for Type II SNe of around 50% or more help to reproduce the peak of sMdust observed after ≈100 Myr from the beginning of the baryon cycle for both dwarf galaxies and LBGs; (ii) galactic outflows play a crucial role in reproducing the observed decline in sMdust with age and are more efficient than grain destruction from Type II SNe both in local galaxies and at high-redshift; (iii) a star formation efficiency (mass of gas converted into stars) of a few percent is required to explain the observed metallicity of local dwarf galaxies; and (iv) dust growth in the ISM is not necessary in order to reproduce the values of sMdust derived for the galaxies under study, and, if present, the effect of this process would be erased by galactic outflows. 
    more » « less
  3. null (Ed.)
    ABSTRACT Observations of ultraviolet (UV) metal absorption lines have provided insight into the structure and composition of the circumgalactic medium (CGM) around galaxies. We compare these observations with the low-redshift (z ≤ 0.3) CGM around dwarf galaxies in high-resolution cosmological zoom-in runs in the FIRE-2 (Feedback In Realistic Environments) simulation suite. We select simulated galaxies that match the halo mass, stellar mass, and redshift of the observed samples. We produce absorption measurements using trident for UV transitions of C iv, O vi, Mg ii, and Si iii. The FIRE equivalent width (EW) distributions and covering fractions for the C iv ion are broadly consistent with observations inside 0.5Rvir, but are underpredicted for O vi, Mg ii, and Si iii. The absorption strengths of the ions in the CGM are moderately correlated with the masses and star formation activity of the galaxies. The correlation strengths increase with the ionization potential of the ions. The structure and composition of the gas from the simulations exhibit three zones around dwarf galaxies characterized by distinct ion column densities: the discy interstellar medium, the inner CGM (the wind-dominated regime), and the outer CGM (the IGM accretion-dominated regime). We find that the outer CGM in the simulations is nearly but not quite supported by thermal pressure, so it is not in hydrostatic equilibrium, resulting in halo-scale bulk inflow and outflow motions. The net gas inflow rates are comparable to the star formation rate of the galaxy, but the bulk inflow and outflow rates are greater by an order of magnitude, with velocities comparable to the virial velocity of the halo. These roughly virial velocities (${\sim } 100 \, \rm km\, s^{-1}$) produce large EWs in the simulations. This supports a picture for dwarf galaxies in which the dynamics of the CGM at large scales are coupled to the small-scale star formation activity near the centre of their haloes. 
    more » « less
  4. Abstract

    We use medium-resolution Keck/Echellette Spectrograph and Imager spectroscopy of bright quasars to study cool gas traced by Caiiλλ3934, 3969 and Naiλλ5891, 5897 absorption in the interstellar/circumgalactic media of 21 foreground star-forming galaxies at redshifts 0.03 <z< 0.20 with stellar masses 7.4 ≤ logM*/M≤ 10.6. The quasar–galaxy pairs were drawn from a unique sample of Sloan Digital Sky Survey quasar spectra with intervening nebular emission, and thus have exceptionally close impact parameters (R< 13 kpc). The strength of this line emission implies that the galaxies’ star formation rates (SFRs) span a broad range, with several lying well above the star-forming sequence. We use Voigt profile modeling to derive column densities and component velocities for each absorber, finding that column densitiesN(Caii) > 1012.5cm−2(N(Nai) > 1012.0cm−2) occur with an incidencefC(Caii) = 0.63+0.10−0.11(fC(Nai) = 0.57+0.10−0.11). We find no evidence for a dependence offCor the rest-frame equivalent widthsWr(CaiiK) orWr(Nai5891) onRorM*. Instead,Wr(CaiiK) is correlated with local SFR at >3σsignificance, suggesting that Caiitraces star formation-driven outflows. While most of the absorbers have velocities within ±50 km s−1of the host redshift, their velocity widths (characterized by Δv90) are universally 30–177 km s−1larger than that implied by tilted-ring modeling of the velocities of interstellar material. These kinematics must trace galactic fountain flows and demonstrate that they persist atR> 5 kpc. Finally, we assess the relationship between dust reddening andWr(CaiiK) (Wr(Nai5891)), finding that 33% (24%) of the absorbers are inconsistent with the best-fit Milky WayE(B−V)-Wrrelations at >3σsignificance.

     
    more » « less
  5. ABSTRACT

    As part of our program to identify host galaxies of known z = 2–3 Mg ii absorbers with the Keck Cosmic Web Imager (KCWI), we discovered a compact group giving rise to a z = 2.431 DLA with ultrastrong Mg ii absorption in quasar field J234628+124859. The group consists of four star-forming galaxies within 8–28 kpc and v ∼ 40–340 km s−1 of each other, where tidal streams are weakly visible in deep HST imaging. The group geometric centre is D = 25 kpc from the quasar (D = 20–40 kpc for each galaxy). Galaxy G1 dominates the group (1.66L*, SFRFUV = 11.6 M⊙ yr−1) while G2, G3, and G4 are less massive (0.1–0.3L*, SFRFUV = 1.4–2.0 M⊙ yr−1). Using a VLT/UVES quasar spectrum covering the H i Lyman series and metal lines such as Mg ii, Si iii, and C iv, we characterized the kinematic structure and physical conditions along the line of sight with cloud-by-cloud multiphase Bayesian modelling. The absorption system has a total $\log (N({{{\rm H}\,\rm{\small I}}})/{\rm cm}^{-2})=20.53$ and an $N({{{\rm H}\,\rm{\small I}}})$-weighted mean metallicity of log (Z/Z⊙) = −0.68, with a very large Mg ii linewidth of Δv ∼ 700 km s−1. The highly kinematically complex profile is well modelled with 30 clouds across low- and intermediate-ionization phases with values ${13\lesssim \log (N({{{\rm H}\,\rm{\small I}}})/{\rm cm}^{-2})\lesssim 20}$ and −3 ≲ log (Z/Z⊙) ≲ 1. Comparing these properties to the galaxy properties, we infer a wide range of gaseous environments, including metal-rich outflows, metal-poor IGM accretion, and tidal streams from galaxy–galaxy interactions. This diversity of structures forms the intragroup medium around a complex compact group environment at the epoch of peak star formation activity. Surveys of low-redshift compact groups would benefit from obtaining a more complete census of this medium for characterizing evolutionary pathways.

     
    more » « less