- Award ID(s):
- 1849131
- PAR ID:
- 10347605
- Editor(s):
- Cox, Michael T.
- Date Published:
- Journal Name:
- Proceedings of the Seventh Annual Conference on Advances in Cognitive Systems
- Page Range / eLocation ID:
- 437-452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Goal reasoning agents can solve novel problems by detecting an anomaly between expectations and observations, generating explanations about plausible causes for the anomaly, and formulating goals to remove the cause. Yet, not all anomalies represent problems. This paper addresses discerning the difference between benign anomalies and those that represent an actual problem for an agent. Furthermore, we present a new definition of the term “problem” in a goal reasoning context. This paper discusses the role of explanations and goal formulation in response to the developing problems and implements it; the paper also illustrates the above in a mine clearance domain and a labor relations domain. We also show the empirical difference between a standard planning agent, an agent that detects anomalies, and an agent that recognizes problems.more » « less
-
The adoption of large language models (LLMs) in healthcare has garnered significant research interest, yet their performance remains limited due to a lack of domain‐specific knowledge, medical reasoning skills, and their unimodal nature, which restricts them to text‐only inputs. To address these limitations, we propose MultiMedRes, a multimodal medical collaborative reasoning framework that simulates human physicians’ communication by incorporating a learner agent to proactively acquire information from domain‐specific expert models. MultiMedRes addresses medical multimodal reasoning problems through three steps i) Inquire: The learner agent decomposes complex medical reasoning problems into multiple domain‐specific sub‐problems; ii) Interact: The agent engages in iterative “ask‐answer” interactions with expert models to obtain domain‐specific knowledge; and iii) Integrate: The agent integrates all the acquired domain‐specific knowledge to address the medical reasoning problems (e.g., identifying the difference of disease levels and abnormality sizes between medical images). We validate the effectiveness of our method on the task of difference visual question answering for X‐ray images. The experiments show that our zero‐shot prediction achieves state‐of‐the‐art performance, surpassing fully supervised methods, which demonstrates that MultiMedRes could offer trustworthy and interpretable assistance to physicians in monitoring the treatment progression of patients, paving the way for effective human–AI interaction and collaboration.
-
In human-aware planning systems, a planning agent might need to explain its plan to a human user when that plan appears to be non-feasible or sub-optimal. A popular approach, called model reconciliation, has been proposed as a way to bring the model of the human user closer to the agent’s model. To do so, the agent provides an explanation that can be used to update the model of human such that the agent’s plan is feasible or optimal to the human user. Existing approaches to solve this problem have been based on automated planning methods and have been limited to classical planning problems only. In this paper, we approach the model reconciliation problem from a different perspective, that of knowledge representation and reasoning, and demonstrate that our approach can be applied not only to classical planning problems but also hybrid systems planning problems with durative actions and events/processes. In particular, we propose a logic-based framework for explanation generation, where given a knowledge base KBa (of an agent) and a knowledge base KBh (of a human user), each encoding their knowledge of a planning problem, and that KBa entails a query q (e.g., that a proposed plan of the agent is valid), the goal is to identify an explanation ε ⊆ KBa such that when it is used to update KBh, then the updated KBh also entails q. More specifically, we make the following contributions in this paper: (1) We formally define the notion of logic-based explanations in the context of model reconciliation problems; (2) We introduce a number of cost functions that can be used to reflect preferences between explanations; (3) We present algorithms to compute explanations for both classical planning and hybrid systems planning problems; and (4) We empirically evaluate their performance on such problems. Our empirical results demonstrate that, on classical planning problems, our approach is faster than the state of the art when the explanations are long or when the size of the knowledge base is small (e.g., the plans to be explained are short). They also demonstrate that our approach is efficient for hybrid systems planning problems. Finally, we evaluate the real-world efficacy of explanations generated by our algorithms through a controlled human user study, where we develop a proof-of-concept visualization system and use it as a medium for explanation communication.more » « less
-
Goal management in autonomous agents has been a problem of interest for a long time. Multiple goal operations are required to solve an agent goal management problem. For example, some goal operations include selection, change, formulation, delegation, monitoring. Many researchers from different fields developed several solution approaches with an implicit or explicit focus on goal operations. For example, some solution approaches include scheduling the agents’ goals, performing cost-benefit analysis to select/organize goals, agent goal formulation in unexpected situations. However, none of them explicitly shed light on the agents’ response when multiple goal operations occur simultaneously. This paper develops an algorithm to address agent goal management when multiple-goal operations co-occur and presents how such an interaction would improve agent goal management in different domains.more » « less
-
The study of goal-reasoning agents capable of integrated action and execution has received a great deal of attention in recent years. While practical implementations and theoretical insights of such agents have provided a wealth of flexible behavior in a variety of task environments, they tend to focus on complex environments that are far from classical planning assumptions. This paper formalizes classical planning problems where an agent can change its goal(s) during execution. We identify the minimal changes to classical planning and formalize a model that supports "classical goal reasoning."more » « less