Abstract This study explores the mechanical interactions between surgical needles and soft tissues during procedures like biopsies and brachytherapy. A key challenge is needle tip deflection, which can cause deviation from the intended target. The study aims to develop an analytical model that predicts needle tip deflection during insertion by combining principles from interfacial mechanics and soft tissue deformation. A modified version of the dynamic Euler-Bernoulli beam theory is employed to model needle insertion and predict needle tip deflection. The model’s predictions are then compared to experimental data obtained from needle insertions in real tissues. The research aims to deepen our understanding of needle-tissue interactions and develop a reliable model for predicting needle deflection, ultimately enhancing surgical robots and navigation systems for safer and more precise percutaneous procedures. Pig organs are used as a material data source for a viscoelastic model, simulating needle insertion into kidney-like environments and analyzing organ deformation. The modified Euler-Bernoulli beam theory considers the viscoelastic properties of the tissue. Deflection is then calculated and compared to experimental data, with analytical deflection measurements exhibiting a 5–10% difference compared to experimental results.
more »
« less
An Analytical Model for Predicting the Deflection of Hollow Surgical Needle in Soft Tissue
Abstract Considerable research efforts have been devoted for studying the interaction between surgical needles and soft tissues which can be used to evaluate the deflection of a bevel-tip needle inside a tissue. The development of an analytical model to predict the steering behavior of the needle during needle-tissue interactions could improve the performance of many percutaneous needle-based procedures. In this study, Euler-Bernoulli beam elastic foundation theory was utilized to model the needle as a cantilever beam moving along its longitudinal axis and undergoing various external loads. The external loads are the result of the interaction between the tissue and the needle during insertion, they can be modeled as a concentrated tissue cutting force acting at the needle bevel, and needle-tissue interaction forces acting along the needle length and tangent to the needle shaft. The accuracy of the analytical predictions offered by the model are verified by comparing them to the experimental data. Due to the assumption of the elastic tissue material, the difference between the analytical model and the experimental results was between 15% to 33%. Current work is ongoing to consider tissue viscoelastic properties to improve the analytical prediction.
more »
« less
- Award ID(s):
- 1917711
- PAR ID:
- 10347696
- Date Published:
- Journal Name:
- Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition
- Volume:
- 5
- Issue:
- V005T05A037
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Medical interventions require control over surgical needle insertion to minimize tissue damage and target inaccuracies during percutaneous procedures. The composite coating of the needle using Polydopamine (PDA), Polytetrafluoroethylene (PTFE), and Activated Carbon (C) has been used to reduce the damaging needle insertion force. This research aims to further understand the interfacial mechanics of coated needle insertion by studying the forces at the needle and tissue interface and developing an analytical insertion force model through a combined experimental and numerical method. The proposed analytical force model is divided into two components: (1) Friction force on the needle shaft, modeled using a modified Karnopp model that includes an elastic force component; (2) Cutting force on the needle tip, modeled using a constant cutting coefficient for a given tissue and insertion speed. In this work, the analytical model was established by incorporating experiments conducted at a reasonable 35 mm insertion depth in tissues. In a bovine kidney with a 35 mm insertion depth, the insertion force evaluated through experimentation and modeling differed by 6.5% for a bare needle and 17.1% for a coated needle. It is important to note that this difference in the analytical insertion force model is anticipated when dealing with real tissues with a highly complex structured tissue. Prediction of the insertion force could potentially be utilized in robotic needle systems for needle control to improve the success of percutaneous procedures.more » « less
-
Abstract Active needles obtain more significant tip deflection and improved accuracy over passive needles for percutaneous procedures. However, their ability to navigate through tissues to reach targets depends upon the actuation mechanism, the tip shape, and the surface geometry of the shaft. In this study, we investigate the benefits of changing the surface geometry of the active needle shaft in a) needle tip deflection and b) trajectory tracking during tissue insertion. The modifications in passive needle surface geometry have been proven to reduce friction force, tissue displacement, and tissue damage. This study incorporates the effect of modifying the regular smooth cannula with a mosquito proboscis-inspired design in the active needles. The changes in insertion force, tip deflection, and trajectory tracking control during insertion into a prostate-mimicking phantom are measured. Results show that insertion force is reduced by up to 10.67% in passive bevel-tip needles. In active needles, tip deflection increased by 12.91% at 150mm when the cannula is modified. The bioinspired cannula improved trajectory tracking error in the active needle by 39% while utilizing up to 17.65% lower control duty cycle. Improving tip deflection and tracking control would lead to better patient outcomes and reduced risk of complications during percutaneous procedures.more » « less
-
Abstract Active needles obtain more significant tip deflection and improved accuracy over passive needles for percutaneous procedures. However, their ability to navigate through tissues to reach targets depends upon the actuation mechanism, the tip shape, and the surface geometry of the shaft. In this study, we investigate the benefits of changing the surface geometry of the active needle shaft in a) needle tip deflection and b) trajectory tracking during tissue insertion. The modifications in passive needle surface geometry have been proven to reduce friction force, tissue displacement, and tissue damage. This study incorporates the effect of modifying the regular smooth cannula with a mosquito proboscis-inspired design in the active needles. The changes in insertion force, tip deflection, and trajectory tracking control during insertion into a prostate-mimicking phantom are measured. Results show that insertion force is reduced by up to 10.67% in passive bevel-tip needles. In active needles, tip deflection increased by 12.91% at 150mm when the cannula is modified. The bioinspired cannula improved trajectory tracking error in the active needle by 39.00% while utilizing up to 17.65% lower control duty cycle. Improving tip deflection and tracking control would lead to better patient outcomes and reduced risk of complications during percutaneous procedures.more » « less
-
Abstract Soft tissue biopsy is a necessary diagnostic and therapeutic procedure, but traditional biopsy needles can cause harm to the patient, including tissue damage, bleeding, and pain. These can compromise the accuracy of the sample and negatively impact the patient’s well-being. Hence, there has been a growing interest in developing bio-inspired surgical needles that are safer, more effective, and more comfortable for the patient. The scorpion-inspired curved tip needle study focuses on analyzing the mechanics of needle-tissue interaction and creating needles that travel through soft tissue with minimum resistance at the tip. An essential aspect of the study is the mechanics and geometry of the needle tip, which plays a crucial role in its performance. The study incorporates structures of curved scorpion’s stinger to balance between penetration and minimal needle-tissue interaction forces. In this study, various parameters of curved tip geometry are explored to decrease the insertion and extraction forces. Tests are initially performed on brain tissue mimicking medical gelatin with Young’s modulus of 2kPa. It is observed that the insertion force with curved tip needles is decreased by up to 21.7%, and the extraction force is decreased by up to 28.2%. This study shows that a scorpion-inspired tip design can minimize insertion and extraction forces, leading to less tissue damage and deformation. Furthermore, the proposed tip design has great potential to improve surgical needles for more effective minimally invasive percutaneous procedures with various applications such as biopsy, brachytherapy, tumor ablation, and drug delivery to the brain.more » « less
An official website of the United States government

