skip to main content

This content will become publicly available on May 5, 2023

Title: Aromatic foldamers as molecular springs in network polymers
Polymer networks crosslinked with spring-like ortho -phenylene ( o P) foldamers were developed. NMR analysis indicated the o P crosslinkers were well-folded. Polymer networks with o P-based crosslinkers showed enhanced energy dissipation and elasticity compared to divinylbenzene crosslinked networks. The energy dissipation was attributed to the strain-induced reversible unfolding of the o P units. Energy dissipation increased with the number of helical turns in the foldamer.
Authors:
; ; ; ; ; ; ;
Award ID(s):
1904236 1919850
Publication Date:
NSF-PAR ID:
10347899
Journal Name:
Chemical Communications
Volume:
58
Issue:
37
Page Range or eLocation-ID:
5590 to 5593
ISSN:
1359-7345
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Double-network (DN) hydrogels, consisting of two contrasting and interpenetrating polymer networks, are considered as perhaps the toughest soft-wet materials. Current knowledge of DN gels from synthesis methods to toughening mechanisms almost exclusively comes from chemically-linked DN hydrogels by experiments. Molecular modeling and simulations of inhomogeneous DN structure in hydrogels have proved to be extremely challenging. Herein, we developed a new multiscale simulation platform to computationally investigate the early fracture of physically-chemically linked agar/polyacrylamide (agar/PAM) DN hydrogels at a long timescale. A “random walk reactive polymerization” (RWRP) was developed to mimic a radical polymerization process, which enables to construct a physically-chemically linked agar/PAM DN hydrogel from monomers, while conventional and steered MD simulations were conducted to examine the structural-dependent energy dissipation and fracture behaviors at the relax and deformation states. Collective simulation results revealed that energy dissipation of agar/PAM hydrogels was attributed to a combination of the pulling out of agar chains from the DNs, the disruption of massive hydrogen bonds between and within DN structures, and the strong association of water molecules with both networks, thus explaining a different mechanical enhancement of agar/PAM hydrogels. This computational work provided atomic details of network structure, dynamics, solvation, and interactions of amore »hybrid DN hydrogel, and a different structural-dependent energy dissipation mode and fracture behavior of a hybrid DN hydrogel, which help to design tough hydrogels with new network structures and efficient energy dissipation modes. Additionally, the RWRP algorithm can be generally applied to construct the radical polymerization-produced hydrogels, elastomers, and polymers.

    « less
  2. Polychaete worms display a remarkable jaw structure, where a gradient in metal-ligand coordination down thelength of the jaw results in a shift from hard to soft mechanics. To mimic these gradient structures, a Zn-coordinated supramolecular polymer is crosslinked into a covalent matrix to afford supramolecular semi-in-terpenetrating networks (SIPNs). These SIPN materials exhibit improved mechanics with a lower supramolecularcontent (30 wt%), allowing for energy dissipation through cavitation to increase material toughness. The shift inmechanical behavior is further attributed to the morphology, where the size of the phase-separated droplets andnature of the continuous phase in these SIPNs contributes to the material mechanics. Furthermore, chemicalgradients are applied to these systems through exposure to a competitive ligand, offering control over the lo-calization of supramolecular interactions. These materials offer a framework to mediate mechanics whilemaintaining the ability to program gradient supramolecular interactions.
  3. Statement of Purpose Hybrid nanoparticles in which a polymer is used to stabilize the secondary structure of enzyme provide a means to preserve its activity in non-native environments. This approach is illustrated here with horseradish peroxidase (HRP), an important heme enzyme used in medical diagnostic, biosensing, and biotechnological applications. Polymer chaperones in these polymer-enzyme complex (PEC) nanoparticles can enhance the utility of enzymes in unfavorable environments. Structural analysis of the PECs is a crucial link in the machine-learning driven iterative optimization cycle of polymer synthesis and testing. Here, we discuss the utility of small-angle X-ray scattering (SAXS) and quartz crystal microbalance with dissipation (QCMD) for evaluating PECs. Materials and Methods Six polymers were synthesized by automated photoinduced electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization directly in 96-well plates.1 Multiple molar ratios of enzyme:polymer (1:1, 1:5, 1:10, and 1:50) were characterized. HRP was mixed with the polymer and heated to 65 °C for 1 hr to form PECs. Enzyme assay and circular dichroism measurements were performed along with SAXS and QCMD to understand polymer-protein interactions. SAXS data were obtained at NSLS-II beamline 16-ID. Results and Discussion SAXS data were analyzed to determine the radius of gyration (Rg), Porod exponent and pair distancemore »distribution functions (P(r)) (Figure 1). Rg, which corresponds to the size of the PEC nanoparticles, is sensitive to the polydispersity of the solution and does not change significantly in the presence of the polymer GEP1. Notably, the maximal dimension does not change as significantly upon heating to denaturation in the case of the PEC as it does with HRP alone. The effect of denaturation induced by heating seems to depend on the molar ratio of the polymer to enzyme. The Porod exponent, which is related to roughness, decreased from about 4 to 3 upon complexation indicating polymer binding to the enzyme’s surface. These were confirmed by modeling the structures of the HRP, the polymer and the PEC were modeled using DAMMIF/DAMMIN and MONSA (ATSAS software). The changes observed in the structure could be correlated to the measured enzymatic activity. Figure 2 shows the evolution of the PEC when the polymer is deposited onto the enzyme immobilized on Figure 1. P(r) plots for PEC vs. HRP before and after heating, illustrating the increased enzymatic stability due to polymer additives. gold-coated QCM sensors. The plots show the changes in frequency (f) and dissipation (D) with time as HRP is first deposited and is followed by the adsorption of the polymer. Large f and D show that the polymer forms a complex with HRP. Such changes were not observed with negative controls, Pluronics and poly(ethylene glycol). Comparison of the data from free particles in solution with QCM data from immobilized enzymes, shows that the conformation of the complexes in solution and surface-bound HRP could be different. This way, we were able to explore the various states of complex formation under different conditions with different polymers. Figure 2. QCMD data showing the interaction between the immobilized HRP and the polymer. 3rd and 5th harmonics are plotted (blue -f; red-D). Conclusion SAXS and QCMD data show that stabilization of the enzyme activity by inhibiting the unraveling of the secondary structure as seen in size, surface roughness, pair distribution function and percent helicity. Acknowledgment This work was supported by NSF grant 2009942. References [1] Tamasi, M, et al. Adv Intell Syst 2020, 2(2): 1900126.« less
  4. This work explores the concept of structurally tailored and engineered macromolecular (STEM) networks by proposing a novel metal-free approach to prepare the networks. STEM networks are composed of polymer networks with latent initiator sites affording post-synthesis modification. The proposed approach relies on selectively activating the fragmentation of trithiocarbonate RAFT agent by relying on visible light RAFT iniferter photolysis coupled with RAFT addition–fragmentation process. The two-step synthesis explored in this work generates networks that are compositionally and mechanically differentiated than their pristine network. In addition, by careful selection of crosslinkers, conventional poly(ethylene glycol) dimethacrylate ( M n = 750) or trithiocarbonate dimethacrylate crosslinker (bis[(2-propionate)ethyl methacrylate] trithiocarbonate (bisPEMAT)), and varying concentrations of RAFT inimer (2-(2-( n -butyltrithiocarbonate)-propionate)ethyl methacrylate (BTPEMA)), three different types of primary (STEM-0) poly(methyl methacrylate) (PMMA) networks were generated under green light irradiation. These networks were then modified with methyl acrylate (MA) or N , N -dimethylacrylamide (DMA), under blue light irradiation to yield STEM-1 gels that are either stiffer or softer with different responses to polarity (hydrophilicity/hydrophobicity).
  5. Understanding the effects of polymer chemistry on membrane ion transport properties is critical for enabling efforts to design advanced highly permselective ion exchange membranes for water purification and energy applications. Here, the effects of fixed charge group type on anion exchange membrane (AEM) apparent permselectivity and ion transport properties were investigated using two crosslinked AEMs. The two AEMs, containing a similar acrylonitrile, styrene and divinyl benzene-based polymer backbone, had either trimethyl ammonium or 1,4-dimethyl imidazolium fixed charge groups. Membrane deswelling, apparent permselectivity and ion transport properties of the two AEMs were characterized using aqueous solutions of lithium chloride, sodium chloride, ammonium chloride, sodium bromide and sodium nitrate. Apparent permselectivity measurements revealed a minor influence of the fixed charge group type on apparent permselectivity. Further analysis of membrane swelling and ion sorption, however, suggests that less hydrophilic fixed charge groups more effectively exclude co-ions compared to more hydrophilic fixed charge groups. Analysis of ion diffusion properties suggest that ion and fixed charge group enthalpy of hydration properties influence ion transport, likely through a counter-ion condensation, ion pairing or binding mechanism. Interactions between fixed charge groups and counter-ions may be stronger if the enthalpy of hydration properties of the ion and fixedmore »charge group are similar, and suppressed counter-ion diffusion was observed in this situation. In general, the hydration properties of the fixed charge group may be important for understanding how fixed charge group chemistry influences ion transport properties in anion exchange membranes.« less