skip to main content


Title: Ligand‐Promoted Rh I ‐Catalyzed C2‐Selective C−H Alkenylation and Polyenylation of Imidazoles with Alkenyl Carboxylic Acids
Abstract

The first RhI‐catalyzed, directed decarbonylative C2−H alkenylation of imidazoles with readily available alkenyl carboxylic acids is reported. The reaction proceeds in a highly regio‐ and stereoselective manner, providing efficient access to C2‐alkenylated imidazoles that are generally inaccessible by known C−H alkenylation methods. This transformation accommodates a wide range of alkenyl carboxylic acids, including challenging conjugated polyene carboxylic acids, and diversely decorated imidazoles with high functional group compatibility. The presence of a removable pyrimidine directing group and the use of a bidentate phosphine ligand are pivotal to the success of the catalytic reaction. This process is also suitable for benzimidazoles. Importantly, the scalability and diversification of the products highlight the potential of this protocol in practical applications. Detailed experimental and computational studies provide important insights into the underlying reaction mechanism.

 
more » « less
Award ID(s):
1902509
NSF-PAR ID:
10445839
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
28
Issue:
36
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A versatile Rh( i )-catalyzed C6-selective decarbonylative C–H alkenylation of 2-pyridones with readily available, and inexpensive alkenyl carboxylic acids has been developed. This directed dehydrogenative cross-coupling reaction affords 6-alkenylated 2-pyridones that would otherwise be difficult to access using conventional C–H functionalization protocols. The reaction occurs with high efficiency and is tolerant of a broad range of functional groups. A wide scope of alkenyl carboxylic acids, including challenging conjugated polyene carboxylic acids, are amenable to this transformation and no addition of external oxidant is required. Mechanistic studies revealed that (1) Boc 2 O acts as the activator for the in situ transformation of the carboxylic acids into anhydrides before oxidative addition by the Rh catalyst, (2) a decarbonylation step is involved in the catalytic cycle, and (3) the C–H bond cleavage is likely the turnover-limiting step. 
    more » « less
  2. Abstract

    Palladium(II)‐catalyzed C(alkenyl)−H alkenylation enabled by a transient directing group (TDG) strategy is described. The dual catalytic process takes advantage of reversible condensation between an alkenyl aldehyde substrate and an amino acid TDG to facilitate coordination of the metal catalyst and subsequent C(alkenyl)−H activation by a tailored carboxylate base. The resulting palladacycle then engages an acceptor alkene, furnishing a 1,3‐diene with high regio‐ andE/Z‐selectivity. The reaction enables the synthesis of enantioenriched atropoisomeric 2‐aryl‐substituted 1,3‐dienes, which have seldom been examined in previous literature. Catalytically relevant alkenyl palladacycles were synthesized and characterized by X‐ray crystallography, and the energy profiles of the C(alkenyl)−H activation step and the stereoinduction model were elucidated by density functional theory (DFT) calculations.

     
    more » « less
  3. Abstract

    Palladium(II)‐catalyzed C(alkenyl)−H alkenylation enabled by a transient directing group (TDG) strategy is described. The dual catalytic process takes advantage of reversible condensation between an alkenyl aldehyde substrate and an amino acid TDG to facilitate coordination of the metal catalyst and subsequent C(alkenyl)−H activation by a tailored carboxylate base. The resulting palladacycle then engages an acceptor alkene, furnishing a 1,3‐diene with high regio‐ andE/Z‐selectivity. The reaction enables the synthesis of enantioenriched atropoisomeric 2‐aryl‐substituted 1,3‐dienes, which have seldom been examined in previous literature. Catalytically relevant alkenyl palladacycles were synthesized and characterized by X‐ray crystallography, and the energy profiles of the C(alkenyl)−H activation step and the stereoinduction model were elucidated by density functional theory (DFT) calculations.

     
    more » « less
  4. Abstract

    The Mizoroki–Heck reaction is one of the most efficient methods for alkenylation of aryl, vinyl, and alkyl halides. Given its innate nature, this protocol requires the employment of compounds possessing a halogen atom at the site of functionalization. However, the accessibility of organic molecules possessing a halogen atom at a particular site in aliphatic systems is extremely limited. Thus, a protocol that allows a Heck reaction to occur at a specific nonfunctionalized C(sp3)−H site is desirable. Reported here is a radical relay Heck reaction which allows selective remote alkenylation of aliphatic alcohols at unactivated β‐, γ‐, and δ‐C(sp3)−H sites. The use of an easily installed/removed Si‐based auxiliary enables selective I‐atom/radical translocation events at remote C−H sites followed by the Heck reaction. Notably, the reaction proceeds smoothly under mild visible‐light‐mediated conditions at room temperature, producing highly modifiable and valuable alkenol products from readily available alcohols feedstocks.

     
    more » « less
  5. Abstract

    The Mizoroki–Heck reaction is one of the most efficient methods for alkenylation of aryl, vinyl, and alkyl halides. Given its innate nature, this protocol requires the employment of compounds possessing a halogen atom at the site of functionalization. However, the accessibility of organic molecules possessing a halogen atom at a particular site in aliphatic systems is extremely limited. Thus, a protocol that allows a Heck reaction to occur at a specific nonfunctionalized C(sp3)−H site is desirable. Reported here is a radical relay Heck reaction which allows selective remote alkenylation of aliphatic alcohols at unactivated β‐, γ‐, and δ‐C(sp3)−H sites. The use of an easily installed/removed Si‐based auxiliary enables selective I‐atom/radical translocation events at remote C−H sites followed by the Heck reaction. Notably, the reaction proceeds smoothly under mild visible‐light‐mediated conditions at room temperature, producing highly modifiable and valuable alkenol products from readily available alcohols feedstocks.

     
    more » « less