skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coding Qualitative Data at Scale: Guidance for Large Coder Teams Based on 18 Studies
We outline a process for using large coder teams (10 + coders) to code large-scale qualitative data sets. The process reflects experience recruiting and managing large teams of novice and trainee coders for 18 projects in the last decade, each engaging a coding team of 12 (minimum) to 54 (maximum) coders. We identify four unique challenges to large coder teams that are not presently discussed in the methodological literature: (1) recruiting and training coders, (2) providing coder compensation and incentives, (3) maintaining data quality and ensuring coding reliability at scale, and (4) building team cohesion and morale. For each challenge, we provide associated guidance. We conclude with a discussion of advantages and disadvantages of large coder teams for qualitative research and provide notes of caution for anyone considering hiring and/or managing large coder teams for research (whether in academia, government and non-profit sectors, or industry).  more » « less
Award ID(s):
2017491 2021147
PAR ID:
10347979
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
International Journal of Qualitative Methods
Volume:
21
ISSN:
1609-4069
Page Range / eLocation ID:
160940692210758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The increasing use of machine learning and Large Language Models (LLMs) opens up opportunities to use these artificially intelligent algorithms in novel ways. This article proposes a methodology using LLMs to support traditional deductive coding in qualitative research. We began our analysis with three different sample texts taken from existing interviews. Next, we created a codebook and inputted the sample text and codebook into an LLM. We asked the LLM to determine if the codes were present in a sample text provided and requested evidence to support the coding. The sample texts were inputted 160 times to record changes between iterations of the LLM response. Each iteration was analogous to a new coder deductively analyzing the text with the codebook information. In our results, we present the outputs for these recursive analyses, along with a comparison of the LLM coding to evaluations made by human coders using traditional coding methods. We argue that LLM analysis can aid qualitative researchers by deductively coding transcripts, providing a systematic and reliable platform for code identification, and offering a means of avoiding analysis misalignment. Implications of using LLM in research praxis are discussed, along with current limitations. 
    more » « less
  2. In this theory paper, we set out to consider, as a matter of methodological interest, the use of quantitative measures of inter-coder reliability (e.g., percentage agreement, correlation, Cohen’s Kappa, etc.) as necessary and/or sufficient correlates for quality within qualitative research in engineering education. It is well known that the phrase qualitative research represents a diverse body of scholarship conducted across a range of epistemological viewpoints and methodologies. Given this diversity, we concur with those who state that it is ill advised to propose recipes or stipulate requirements for achieving qualitative research validity and reliability. Yet, as qualitative researchers ourselves, we repeatedly find the need to communicate the validity and reliability—or quality—of our work to different stakeholders, including funding agencies and the public. One method for demonstrating quality, which is increasingly used in qualitative research in engineering education, is the practice of reporting quantitative measures of agreement between two or more people who code the same qualitative dataset. In this theory paper, we address this common practice in two ways. First, we identify instances in which inter-coder reliability measures may not be appropriate or adequate for establishing quality in qualitative research. We query research that suggests that the numerical measure itself is the goal of qualitative analysis, rather than the depth and texture of the interpretations that are revealed. Second, we identify complexities or methodological questions that may arise during the process of establishing inter-coder reliability, which are not often addressed in empirical publications. To achieve this purposes, in this paper we will ground our work in a review of qualitative articles, published in the Journal of Engineering Education, that have employed inter-rater or inter-coder reliability as evidence of research validity. In our review, we will examine the disparate measures and scores (from 40% agreement to 97% agreement) used as evidence of quality, as well as the theoretical perspectives within which these measures have been employed. Then, using our own comparative case study research as an example, we will highlight the questions and the challenges that we faced as we worked to meet rigorous standards of evidence in our qualitative coding analysis, We will explain the processes we undertook and the challenges we faced as we assigned codes to a large qualitative data set approached from a post positivist perspective. We will situate these coding processes within the larger methodological literature and, in light of contrasting literature, we will describe the principled decisions we made while coding our own data. We will use this review of qualitative research and our own qualitative research experiences to elucidate inconsistencies and unarticulated issues related to evidence for qualitative validity as a means to generate further discussion regarding quality in qualitative coding processes. 
    more » « less
  3. This research paper elaborates on the process used by a team of researchers to create a codebook from interviews of Civil Engineers, which included students, professors, and professionals, solving ill-structured problems. The participants solved two ill-structured problems while speaking aloud their thought process. In addition to recording the participant verbalization, the solution to their problems were also collected with the use of a smart pen. Creating a codebook from interviews is a key element of qualitative analysis forming the basis for coding. While individuals can create codebooks for analysis, a team-based approach is advantageous especially when dealing with large amounts of data. A team-based approach involves an iterative process of inter-rater reliability essential to the trustworthiness of the data obtained by coding. In addition to coding the transcripts as a team, which consisted of novice, intermediate, and experts in the engineering education field, the audio and written solution to the problems were also coded. The use of multiple data sources to obtain data, and not just the verbatim transcripts, is lesser studied in engineering education literature and provides opportunities for a more detailed qualitative analysis. Initial codes were created from existing literature, which were refined through an iterative process. This process consisted of coding data, team consensus on coded data, codebook refinement, and recoding data with the refined codes. Results show that coding verbatim transcripts might not provide an accurate representation of the problem-solving processes participants used to solve the ill-structured problem. Benefits, challenges and recommendations regarding the use of multiple sources to obtain data are discussed while considering the amount of time required to conduct such analysis. 
    more » « less
  4. This research paper elaborates on the process used by a team of researchers to create a codebook from interviews of Civil Engineers who included students, professors, and professionals, solving ill-structured problems. The participants solved two ill-structured problems while speaking aloud their thought process. In addition to recording the participant verbalization, the solution to their problems were also collected with the use of a smart pen. Creating a codebook from interviews is a key element of qualitative analysis forming the basis for coding. While individuals can create codebooks for analysis, a team-based approach is advantageous especially when dealing with large amounts of data. A team-based approach involves an iterative process of inter-rater reliability essential to the trustworthiness of the data obtained by coding. In addition to coding the transcripts as a team, which consisted of novice, intermediate, and experts in the engineering education field, the audio and written solution to the problems were also coded. The use of multiple data sources to obtain data, and not just the verbatim transcripts, is lesser studied in engineering education literature and provides opportunities for a more detailed qualitative analysis. Initial codes were created from existing literature, which were refined through an iterative process. This process consisted of coding data, team consensus on coded data, codebook refinement, and recoding data with the refined codes. Results show that coding verbatim transcripts might not provide an accurate representation of the problem-solving processes participants used to solve the ill-structured problem. Benefits, challenges and recommendations regarding the use of multiple sources to obtain data are discussed while considering the amount of time required to conduct such analysis. 
    more » « less
  5. Team structures---roles, norms, and interaction patterns---define how teams work. HCI researchers have theorized ideal team structures and built systems nudging teams towards them, such as those increasing turn-taking, deliberation, and knowledge distribution. However, organizational behavior research argues against the existence of universally ideal structures. Teams are diverse and excel under different structures: while one team might flourish under hierarchical leadership and a critical culture, another will flounder. In this paper, we present DreamTeam: a system that explores a large space of possible team structures to identify effective structures for each team based on observable feedback. To avoid overwhelming teams with too many changes, DreamTeam introduces multi-armed bandits with temporal constraints: an algorithm that manages the timing of exploration--exploitation trade-offs across multiple bandits simultaneously. A field experiment demonstrated that DreamTeam teams outperformed self-managing teams by 38%, manager-led teams by 46%, and teams with unconstrained bandits by 41%. This research advances computation as a powerful partner in establishing effective teamwork. 
    more » « less