skip to main content

This content will become publicly available on February 1, 2023

Title: A Fast Radio Burst Progenitor Born in a Galaxy Merger
Abstract We report a Giant Metrewave Radio Telescope 21 cm mapping study of the neutral atomic hydrogen (H i ) in the host galaxy of the fast radio burst (FRB) FRB 20180916B at z ≈ 0.03399. We find that the FRB host has an H i mass of M H i = (2.74 ± 0.33) × 10 9 M ⊙ and a high H i to stellar mass ratio, ≈1.3. The FRB host is thus a gas-rich but near-quiescent galaxy that is likely to have acquired a significant mass of H i in the recent past. The H i distribution is disturbed, with extended H i 21 cm emission detected in a northeastern tail, a counter-tail toward the south, an H i hole between the galaxy center and the FRB location, and a high H i column density measured close to the FRB position. The FRB host is part of a group with four companions detected in their H i 21 cm emission, the nearest of which is only 22 kpc from the FRB location. The gas richness and disturbed H i distribution indicate that the FRB host has recently undergone a minor merger, which increased its H i mass, more » disturbed the H i in the galaxy disk, and compressed the H i near the FRB location to increase its surface density. We propose that this merger caused the burst of star formation in the outskirts of the galaxy that gave rise to the FRB progenitor. The evidence for a minor merger is consistent with scenarios in which the FRB progenitor is a massive star, formed due to the merger event. « less
Authors:
; ;
Award ID(s):
1911140
Publication Date:
NSF-PAR ID:
10347993
Journal Name:
The Astrophysical Journal Letters
Volume:
925
Issue:
2
Page Range or eLocation-ID:
L20
ISSN:
2041-8205
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a high-resolution analysis of the host galaxy of fast radio burst (FRB) 190608, an SB(r)c galaxy at z = 0.11778 (hereafter HG 190608), to dissect its local environment and its contributions to the FRB properties. Our Hubble Space Telescope Wide Field Camera 3 ultraviolet and visible light image reveals that the subarcsecond localization of FRB 190608 is coincident with a knot of star formation (Σ SFR = 1.5 × 10 −2 M ⊙ yr −1 kpc −2 ) in the northwest spiral arm of HG 190608. Using H β emission present in our Keck Cosmic Web Imager integral field spectrum of the galaxy with a surface brightness of μ H β = ( 3.36 ± 0.21 ) × 10 − 17 erg s − 1 cm − 2 arcsec − 2 , we infer an extinction-corrected H α surface brightness and compute a dispersion measure (DM) from the interstellar medium of HG 190608 of DM Host,ISM = 94 ± 38 pc cm −3 . The galaxy rotates with a circular velocity v circ = 141 ± 8 km s −1 at an inclination i gas = 37° ± 3°, giving a dynamical mass M halo dyn ≈more »10 11.96 ± 0.08 M ⊙ . This implies a halo contribution to the DM of DM Host,Halo = 55 ± 25 pc cm −3 subject to assumptions on the density profile and fraction of baryons retained. From the galaxy rotation curve, we infer a bar-induced pattern speed of Ω p = 34 ± 6 km s −1 kpc −1 using linear resonance theory. We then calculate the maximum time since star formation for a progenitor using the furthest distance to the arm’s leading edge within the localization, and find t enc = 21 − 6 + 25 Myr. Unlike previous high-resolution studies of FRB environments, we find no evidence of disturbed morphology, emission, or kinematics for FRB 190608.« less
  2. Abstract We present the discovery of neutral gas detected in both damped Ly α absorption (DLA) and H i 21 cm emission outside of the stellar body of a galaxy, the first such detection in the literature. A joint analysis between the Cosmic Ultraviolet Baryon Survey and the MeerKAT Absorption Line Survey reveals an H i bridge connecting two interacting dwarf galaxies (log ( M star / M ⊙ ) = 8.5 ± 0.2) that host a z = 0.026 DLA with log[ N (H i )/cm −2 ] = 20.60 ± 0.05 toward the QSO J2339−5523 ( z QSO = 1.35). At impact parameters of d = 6 and 33 kpc, the dwarf galaxies have no companions more luminous than ≈0.05 L * within at least Δ v = ±300 km s −1 and d ≈ 350 kpc. The H i 21 cm emission is spatially coincident with the DLA at the 2 σ –3 σ level per spectral channel over several adjacent beams. However, H i 21 cm absorption is not detected against the radio-bright QSO; if the background UV and radio sources are spatially aligned, the gas is either warm or clumpy (with a spin temperature tomore »covering factor ratio T s / f c > 1880 K). Observations with VLT-MUSE demonstrate that the α -element abundance of the ionized interstellar medium (ISM) is consistent with the DLA (≈10% solar), suggesting that the neutral gas envelope is perturbed ISM gas. This study showcases the impact of dwarf–dwarf interactions on the physical and chemical state of neutral gas outside of star-forming regions. In the SKA era, joint UV and H i 21 cm analyses will be critical for connecting the cosmic neutral gas content to galaxy environments.« less
  3. Abstract The H i gas content is a key ingredient in galaxy evolution, the study of which has been limited to moderate cosmological distances for individual galaxies due to the weakness of the hyperfine H i 21 cm transition. Here we present a new approach that allows us to infer the H i gas mass M HI of individual galaxies up to z ≈ 6, based on a direct measurement of the [C ii ]-to-H i conversion factor in star-forming galaxies at z ≳ 2 using γ -ray burst afterglows. By compiling recent [C ii ]-158 μ m emission line measurements we quantify the evolution of the H i content in galaxies through cosmic time. We find that M HI starts to exceed the stellar mass M ⋆ at z ≳ 1, and increases as a function of redshift. The H i fraction of the total baryonic mass increases from around 20% at z = 0 to about 60% at z ∼ 6. We further uncover a universal relation between the H i gas fraction M HI / M ⋆ and the gas-phase metallicity, which seems to hold from z ≈ 6 to z = 0. The majority of galaxiesmore »at z > 2 are observed to have H i depletion times, t dep,HI = M HI /SFR, less than ≈2 Gyr, substantially shorter than for z ∼ 0 galaxies. Finally, we use the [C ii ]-to-H i conversion factor to determine the cosmic mass density of H i in galaxies, ρ HI , at three distinct epochs: z ≈ 0, z ≈ 2, and z ∼ 4–6. These measurements are consistent with previous estimates based on 21 cm H i observations in the local universe and with damped Ly α absorbers (DLAs) at z ≳ 2, suggesting an overall decrease by a factor of ≈5 in ρ HI ( z ) from the end of the reionization epoch to the present.« less
  4. Abstract We report new observations toward the hyperluminous dusty starbursting major merger ADFS-27 ( z  = 5.655), using the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). We detect CO ( J  = 2 → 1), CO ( J  = 8 → 7), CO ( J  = 9 → 8), CO ( J  = 10 → 9), and H 2 O (3 12  → 2 21 ) emission, and a P Cygni−shaped OH + (1 1  → 0 1 ) absorption/emission feature. We also tentatively detect H 2 O (3 21  → 3 12 ) and OH + (1 2 → 0 1 ) emission and CH + ( J  = 1 → 0) absorption. We find a total cold molecular mass of M gas  = (2.1 ± 0.2) × 10 11 ( α CO /1.0) M ⊙ . We also find that the excitation of the star-forming gas is overall moderate for a z > 5 dusty starburst, which is consistent with its moderate dust temperature. A high-density, high kinetic temperature gas component embedded in the gas reservoir is required to fully explain the CO line ladder. This component is likely associated with the “maximum starburst” nuclei in the two merging galaxies, which are separated by only 140 ± 13 km s −1 along the line of sightmore »and 9.0 kpc in projection. The kinematic structure of both components is consistent with galaxy disks, but this interpretation remains limited by the spatial resolution of the current data. The OH + features are only detected toward the northern component, which is also the one that is more enshrouded in dust and thus remains undetected up to 1.6 μ m even in our sensitive new Hubble Space Telescope Wide Field Camera 3 imaging. The absorption component of the OH + line is blueshifted and peaks near the CO and continuum emission peak, while the emission is redshifted and peaks offset by 1.7 kpc from the CO and continuum emission peak, suggesting that the gas is associated with a massive molecular outflow from the intensely star-forming nucleus that supplies 125 M ⊙ yr −1 of enriched gas to its halo.« less
  5. Abstract We present panchromatic observations and modeling of calcium-strong supernovae (SNe) 2021gno in the star-forming host-galaxy NGC 4165 and 2021inl in the outskirts of elliptical galaxy NGC 4923, both monitored through the Young Supernova Experiment transient survey. The light curves of both, SNe show two peaks, the former peak being derived from shock cooling emission (SCE) and/or shock interaction with circumstellar material (CSM). The primary peak in SN 2021gno is coincident with luminous, rapidly decaying X-ray emission ( L x = 5 × 10 41 erg s −1 ) detected by Swift-XRT at δ t = 1 day after explosion, this observation being the second-ever detection of X-rays from a calcium-strong transient. We interpret the X-ray emission in the context of shock interaction with CSM that extends to r < 3 × 10 14 cm. Based on X-ray modeling, we calculate a CSM mass M CSM = (0.3−1.6) × 10 −3 M ⊙ and density n = (1−4) × 10 10 cm −3 . Radio nondetections indicate a low-density environment at larger radii ( r > 10 16 cm) and mass-loss rate of M ̇ < 10 − 4 M ⊙ yr −1 . SCE modeling of both primary light-curvemore »peaks indicates an extended-progenitor envelope mass M e = 0.02−0.05 M ⊙ and radius R e = 30−230 R ⊙ . The explosion properties suggest progenitor systems containing either a low-mass massive star or a white dwarf (WD), the former being unlikely given the lack of local star formation. Furthermore, the environments of both SNe are consistent with low-mass hybrid He/C/O WD + C/O WD mergers.« less